- EL HW 14 out later today

$$
\begin{gathered}
f^{\prime}(\zeta) \approx \alpha_{1} y_{1}+\alpha_{2} y_{2}+\alpha_{3} y_{3}+\alpha_{4} y_{4}+O\left(h^{?}\right) \\
\alpha_{i}=\psi_{i}\left(x_{1}, \ldots, x_{4}\right)
\end{gathered}
$$

Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?

$$
\begin{aligned}
p_{1-1}(x)=\sum_{\alpha=1}^{n} \alpha: \varphi_{i}(x) & V \vec{\alpha}=\vec{y} \Leftrightarrow \vec{\alpha}= \\
p_{1-1}^{\prime}(x)=\sum_{\alpha=1}^{n} \alpha_{:} \varphi_{i}^{\prime}(x) & \\
V^{\prime}=\left(\begin{array}{ll}
\varphi_{1}^{\prime}\left(x_{1}\right) & \varphi_{2}^{\prime}\left(x_{1}\right) \\
\varphi_{1}^{\prime}\left(x_{1}\right)
\end{array}\right. & \cdots
\end{aligned}
$$

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)

$$
\left(\begin{array}{c}
g^{\prime}(x) \\
\vdots \\
f^{\prime}(x)
\end{array}\right)=\frac{D}{V^{\prime} V^{-1}} \sqrt{\left(\begin{array}{c}
f(x) \\
\vdots \\
p(s)
\end{array}\right)}
$$

$$
f^{\prime}(\xi) \approx \alpha_{1} y_{1}+\alpha_{2} y_{2}+\alpha_{3} y_{3}+\alpha_{4} y_{4}+O\left(h^{?}\right)
$$

\Rightarrow Each row of D contains a finitediffermce rule

$$
f^{\prime}\left(x_{1}\right) \approx d_{11} f\left(x_{1}\right)+\cdots+d_{1 n} f\left(x_{x_{1}}\right)
$$

Shift:

\rightarrow does not change D, does not ohg $\$$ Darkle
Scale:

\rightarrow scaling nodes by δ : become $\frac{\bar{\alpha}}{\delta}$

Properties of Differentiation Matrices

How do I find second derivatives?

Does D have a nullspace?

Numerical Differentiation: Shift and Scale

Does D change if we shift the nodes $\left(x_{i}\right)_{i=1}^{n} \rightarrow\left(x_{i}+c\right)_{i=1}^{n}$?

Does D change if we scale the nodes $\left(x_{i}\right)_{i=1}^{n} \rightarrow\left(\alpha x_{i}\right)_{i=1}^{n}$?

Finite Difference Formulas from Diff. Matrices

How do the rows of a differentiation matrix relate to FD formulas?

Assume a large equispaced grid and 3 nodes $\mathrm{w} /$ same spacing. How to use?

Finite Differences: via Taylor

$$
\begin{gathered}
f^{\prime}(x) \approx \frac{f(x+L)-f(x)}{h}+O(h \cup 1) \\
f(x+L)=f^{\prime}(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{L^{2}}{2}+\cdots- \\
f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{L^{2}}{2}+\cdots-f(x) \\
h
\end{gathered} \frac{f^{\prime}(x)+O(L)}{}
$$

More Finite Difference Rules

Similarly:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right)
$$

(Centered differences)
Can also take higher order derivatives: \rightarrow usig davis matrices! D^{2}

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+O\left(h^{2}\right)
$$

Can find these by trying to match Taylor terms.
Alternative: Use linear algebra with interpolate-then-differentiate to find FD formulas.
Demo: Finite Differences vs Noise [cleared]
Demo: Floating point vs Finite Differences [cleared]

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods (I)
Accuracy and Stability
Stiffness
Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What can we solve already?

- Linear Systems: yes
- Nonlinear systems: yes
- Systems with derivatives: no

Some Applications

Demo: Predator-Prey System [cleared]

Initial Value Problems: Problem Statement
Want: Function $\boldsymbol{y}:[0, T] \rightarrow \mathbb{R}^{n}$ so that

- $\boldsymbol{y}^{(k)}(t)=\underset{\sim}{\boldsymbol{f}}\left(t, \boldsymbol{y}, \boldsymbol{y}^{\prime}, \boldsymbol{y}^{\prime \prime}, \ldots, \boldsymbol{y}^{(k-1)}\right) \quad$ (explicit), or
- $\boldsymbol{f}\left(t, \boldsymbol{y}, \boldsymbol{y}^{\prime}, \overrightarrow{\boldsymbol{y}}^{\prime \prime}, \ldots, \boldsymbol{y}^{(k)}\right)=0 \quad$ (implicit)
are called explicit/implicit kth-order ordinary differential equations (ODEs).
Give a simple example.

$$
y^{\prime}=\alpha y \quad y(t)=c \cdot e^{\alpha t}
$$

Not uniquely solvable on its own. What else is needed?

$$
\begin{aligned}
& y^{\prime \prime}=f\left(y, y^{\prime}\right) \quad \rightarrow \text { needs } y \text { and } y^{\prime} \\
& \text { need } \quad y \quad(0)=\cdots \\
& \vdots \\
& \left.y^{(h-1)}(0)=\cdots\right) \quad h \text { initicel conditions }
\end{aligned}
$$

Reducing ODEs to First-Order Form

$$
\vec{w}^{\prime}+\rho(\vec{w})
$$

A k th order ODE can always be reduced to first order. Do this in this example:

$$
y^{\prime \prime}(t)=f(y)
$$

$$
\left[\begin{array}{l}
w_{1}=y \\
w_{2}=y^{\prime}
\end{array}\right] \quad\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
w_{2} \\
f\left(w_{1}\right)
\end{array}\right]
$$

\rightarrow for nurences: need only worn about (systems of) First-order OOES

Properties of ODEs

What is a linear ODE?

$$
\vec{y}^{\prime}=\hat{p}(\vec{y}, \vec{y})
$$

$$
\dot{p}(1, \vec{y})=A(1) \vec{y}+\dot{b}(1)
$$

What is a linear and homogeneous ODE?

$$
\bar{p}(1, \vec{y})=A(A) \vec{y}
$$

What is a constant-coefficient ODE?
$f(t, \vec{y})=A \vec{y}+\vec{b}$

Existence and Uniqueness
Consider the perturbed problem
(where L is called the Lipschitz constant), then. .

- there exists a solution y a neighborhood of do

$$
\text { - }\|\vec{y}(t)-\overrightarrow{\hat{y}}(t)\| \leq e^{\left(t-t_{0}\right)}\left\|\vec{y}_{0}-\overrightarrow{\tilde{y}}_{0}\right\|
$$

What does this mean for uniqueness?
Picard. (indelot theosen
Implicitly covers unique ness as well

$$
\vec{y}_{0}=\tilde{y}_{0} \Rightarrow \vec{y}(t)=\tilde{y}(t)
$$

Conditioning
Unfortunate terminology accident: "Stability" in ODE-speak
To adapt to conventional terminology, we will use 'Stability' for
the conditioning of the IVP, and

- the stability of the methods we cook up.

Some terminology:
An ODE is stable if and only if. . .
IV P
The solution is coatinously dopendent on the $1 C$.
For all $\varepsilon>0$ there exists a $\delta>0$ so that

$$
\left\|\hat{y}_{0}-\vec{y}_{0}\right\|<\delta \Rightarrow\|\hat{y}(t)-\vec{y}(t)\|<\varepsilon \text { for all } f \geq d_{0} \text {. }
$$

An GE is asymptotically stable if and only if

$$
\overline{\hat{y}}(t)-\dot{y}(t) \mid \rightarrow 0 \quad t \rightarrow \infty
$$

Example I: Scalar, Constant-Coefficient

Example II: Constant-Coefficient System

Assurhe $V^{-1} \mathrm{AV} \stackrel{\uparrow}{=} D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ diagonal. Find a solution.

Euler's Method
Discretize the IVP

$$
\left\{\begin{array}{l}
\boldsymbol{y}^{\prime}(t)=\boldsymbol{f}(\boldsymbol{y}) \\
\boldsymbol{y}\left(t_{0}\right)=\boldsymbol{y}_{0}
\end{array}\right.
$$

- Discrete times: t_{1}, t_{2}, \ldots, with $t_{i+1}=t_{i}+h$
- Discrete function values: $\boldsymbol{y}_{k} \approx \boldsymbol{y}\left(t_{k}\right)$.

$$
\stackrel{\rightharpoonup}{y}(d)=\vec{y}_{0}+\int_{\lambda t_{0}}^{t} f(y(\tau)) d \tau
$$

Picard's int. eq.
use quadrature.
Forward $E_{\text {need }}, y(t)=y_{0}+f\left(y_{\partial}\right) \cdot \Delta t$
"left rectangle rule": $\int_{a}^{b} f(x) d x \approx f(a) \cdot(b-a)$

Euler's method: Forward and Backward

$$
\boldsymbol{y}(t)=\boldsymbol{y}_{0}+\int_{t_{0}}^{t} \boldsymbol{f}(\boldsymbol{y}(\tau)) \mathrm{d} \tau
$$

Use 'left rectangle rule' on integral:

$$
\vec{y}_{k+1}=\underbrace{\stackrel{\rightharpoonup}{y}_{n}+h \rho\left(y_{n}\right)}_{\text {explicit } \rightarrow \text { canjusl euducte }}
$$

Use 'right rectangle rule' on integral:

$$
\underbrace{h}_{\text {implicit } \rightarrow \text { solve for }{\underset{y}{k+1}}^{\vec{y}_{k+1}=\vec{y}_{k}+h f\left(y_{n+1}\right)}}
$$

