- EC HW 14 out later today

Differentiation Matrices

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)

$$g'(g) \simeq \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3 + \lambda_4 y_4 + O(h^?)$$

=> Each row of D contains a finite difference rule f'(x,) ~ d_1, f(x,) + ... + d_1, f(x,)

Properties of Differentiation Matrices

How do I find second derivatives?

Does *D* have a nullspace?

Numerical Differentiation: Shift and Scale

Does D change if we shift the nodes $(x_i)_{i=1}^n \rightarrow (x_i + c)_{i=1}^n$?

Does D change if we scale the nodes $(x_i)_{i=1}^n \to (\alpha x_i)_{i=1}^n$?

Finite Difference Formulas from Diff. Matrices

How do the rows of a differentiation matrix relate to FD formulas?

Assume a large equispaced grid and 3 nodes w/same spacing. How to use?

Finite Differences: via Taylor

$$\begin{cases} \frac{1}{x} + \frac{1}{y} + \frac$$

More Finite Difference Rules

Similarly:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

(Centered differences)

Can also take higher order derivatives: Jusing Janis. matrices ! D

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)$$

Can find these by trying to match Taylor terms.

Alternative: Use linear algebra with interpolate-then-differentiate to find FD formulas.

Demo: Finite Differences vs Noise [cleared] **Demo:** Floating point vs Finite Differences [cleared]

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Existence, Uniqueness, Conditioning Numerical Methods (I) Accuracy and Stability Stiffness Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What can we solve already?

- ► Linear Systems: yes
- Nonlinear systems: yes
- Systems with derivatives: no

Demo: Predator-Prey System [cleared]

Initial Value Problems: Problem Statement

Want: Function $\boldsymbol{y} : [0, T] \to \mathbb{R}^n$ so that

•
$$\mathbf{y}^{(k)}(t) = \mathbf{f}(t, \mathbf{y}, \mathbf{y}', \mathbf{y}'', \dots, \mathbf{y}^{(k-1)})$$
 (explicit), or

•
$$f(t, y, y', y'', \dots, y^{(k)}) = 0$$
 (implicit)

are called explicit/implicit *kth-order ordinary differential equations* (*ODEs*). Give a simple example.

Not uniquely solvable on its own. What else is needed?

$$y'' = f(y, y') \rightarrow heads \quad y \quad ant \quad y'$$

need $y \quad (0) = \dots$

 $y^{(h-1)} \quad (0) = \dots$

h initial conditions

Reducing ODEs to First-Order Form

ducing ODEs to First-Order Form A kth order ODE can always be reduced to first order. Do this in this example: y''(t) = f(y)

Properties of ODEs

$$\vec{y}' = \vec{Q} k_i \vec{y}$$

What is a linear ODE?

$$\vec{P}(1,\vec{q}) = A(1)\vec{q} + \vec{P}(1)$$

What is a linear and homogeneous ODE?

$$(I_1 \bar{x}) = A(J) \bar{y}$$

What is a constant-coefficient ODE?

Existence and Uniqueness

Then

Consider the perturbed problem

$$\begin{cases} \mathbf{y}'(t) = \mathbf{f}(\mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases} \begin{cases} \mathbf{\hat{y}}'(t) = \mathbf{f}(\mathbf{\hat{y}}) \\ \mathbf{\hat{y}}(t_0) = \mathbf{\hat{y}}_0 \end{cases} \begin{cases} \mathbf{\hat{y}}'(t) = \mathbf{f}(\mathbf{\hat{y}}) \\ \mathbf{\hat{y}}(t_0) = \mathbf{\hat{y}}_0 \end{cases}$$
Then if \mathbf{f} is Lipschitz continuous (has 'bounded slope'), i.e.

$$\|\mathbf{f}(\mathbf{y}) - \mathbf{f}(\mathbf{\hat{y}})\| \leq L \|\mathbf{y} - \mathbf{\hat{y}}\|$$
(where L is called the Lipschitz constant), then...
• there exists a solution \mathbf{y} is a neighborhood of \mathbf{d}_0
• $\|\mathbf{y}(\mathbf{y}) - \mathbf{\hat{y}}(\mathbf{y})\| \leq e^{C(\mathbf{f} - \mathbf{f}_0)} \|\mathbf{y}_0 - \mathbf{\hat{y}}_0\|$

What does this mean for uniqueness?

Vicard . (indeligt themen

Conditioning

Unfortunate terminology accident: "Stability" in ODE-speak

To adapt to conventional terminology, we will use 'Stability' for

- ▶ the conditioning of the IVP, and
- the stability of the methods we cook up.

Some terminology:

```
An ODE is stable if and only if...
```

An ODE is asymptotically stable if and only if

Example I: Scalar, Constant-Coefficient

280

Example II: Constant-Coefficient System

Å

Assume
$$V^{-1} AV = D = \text{diag}(\lambda_1, \dots, \lambda_n)$$
 diagonal. Find a solution.

- hom, const. coeff.

Euler's Method

Euler's method: Forward and Backward

$$\mathbf{y}(t) = \mathbf{y}_0 + \int_{t_0}^t \mathbf{f}(\mathbf{y}(\tau)) \mathrm{d}\tau,$$

Use 'left rectangle rule' on integral:

Use 'right rectangle rule' on integral:

Demo: Forward Euler stability [cleared]