








Floating Point Numbers

Convert 13 = (1101)2 into floating point representation.

What pieces do you need to store an FP number?

34



Floating Point: Implementation, Normalization
Previously: Consider mathematical view of FP. (via example: (1101)2)
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?

35



Unrepresentable numbers?
Can you think of a somewhat central number that we cannot represent as

x = (1._________)2 · 2−p?

Demo: Picking apart a floating point number [cleared]
36



Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored
bits (5 total) in the significand and a stored exponent range of [−7, 8]?

37



Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored
bits (5 total) in the significand and a stored exponent range of [−7, 8]?

First attempt:
▶ Significand as small as possible → all zeros after the implicit

leading one
▶ Exponent as small as possible: −7

So:
(1.0000)2 · 2−7.

Unfortunately: wrong.

37



Subnormal Numbers, Attempt 2
What is the smallest representable number in an FP system with 4 stored
bits in the significand and a (stored) exponent range of [−7, 8]?

Why learn about subnormals?

38



Subnormal Numbers, Attempt 2
What is the smallest representable number in an FP system with 4 stored
bits in the significand and a (stored) exponent range of [−7, 8]?

▶ Can go way smaller using the special exponent (turns off the
leading one)

▶ Assume that the special exponent is −7.
▶ So: (0.001)2 · 2−7 (with all four digits stored).

Numbers with the special epxonent are called subnormal (or denor-
mal) FP numbers. Technically, zero is also a subnormal.

Why learn about subnormals?

▶ Subnormal FP is often slow: not implemented in hardware.
▶ Many compilers support options to ‘flush subnormals to zero’.

38



Underflow

▶ FP systems without subnormals will underflow (return 0) as soon as
the exponent range is exhausted.

▶ This smallest representable normal number is called the underflow
level, or UFL.

▶ Beyond the underflow level, subnormals provide for gradual underflow
by ‘keeping going’ as long as there are bits in the significand, but it is
important to note that subnormals don’t have as many accurate digits
as normal numbers.
Read a story on the epic battle about gradual underflow

▶ Analogously (but much more simply–no ‘supernormals’): the overflow
level, OFL.

39



Rounding Modes
How is rounding performed? (Imagine trying to represent π.)


1.1101010| {z }
representable

11
�
2

What is done in case of a tie? 0.5 = (0.1)2 (“Nearest”?)

Demo: Density of Floating Point Numbers [cleared]
[ red]

40



Rounding Modes
How is rounding performed? (Imagine trying to represent π.)


1.1101010| {z }
representable

11
�
2

What is done in case of a tie? 0.5 = (0.1)2 (“Nearest”?)

Up or down? It turns out that picking the same direction every time
introduces bias. Trick: round-to-even.

0.5 → 0, 1.5 → 2

Demo: Density of Floating Point Numbers [cleared]
[ red]

40



Smallest Numbers Above. . .

▶ What is smallest FP number > 1? Assume 4 stored bits (5 total) in
the significand.

What’s the smallest FP number > 1024 in that same system?

Can we give that number a name?

41



Unit Roundoff

Unit roundoff or machine precision or machine epsilon or εmach is. . .

42



FP: Relative Rounding Error
What does this say about the relative error incurred in floating point
calculations?

43



FP: Machine Epsilon

What’s machine epsilon for double-precision floating point with
round-to-nearest? (52 stored bits in the significand, 53 total)

Demo: Floating Point and the Harmonic Series [cleared]

44



Implementing Arithmetic
How is floating point addition implemented?
Consider adding a = (1.101)2 · 21 and b = (1.001)2 · 2−1 in a system with
three stored bits (four total) in the significand.

45



Implementing Arithmetic
How is floating point addition implemented?
Consider adding a = (1.101)2 · 21 and b = (1.001)2 · 2−1 in a system with
three stored bits (four total) in the significand.

Rough algorithm:
1. Bring both numbers onto a common exponent
2. Do grade-school addition from the front, until you run out of

digits in your system.
3. Round result.

a = 1. 101 · 21

b = 0. 01001 · 21

a+ b ≈ 1. 111 · 21

45



Problems with FP Addition
What happens if you subtract two numbers of very similar magnitude?
As an example, consider a = (1.1011)2 · 20 and b = (1.1010)2 · 20.

Demo: Catastrophic Cancellation [cleared]
46


