

Godsi - Numpy beast - norms

(5 En error / bu error / conditioning

num bors


Norms: Examples

Examples of norms?

rel. =
$$\frac{|x-x|}{|x|}$$
 vel. ||

(number)

(vecha)

Norms: Which one?

Does the choice of norm really matter much?

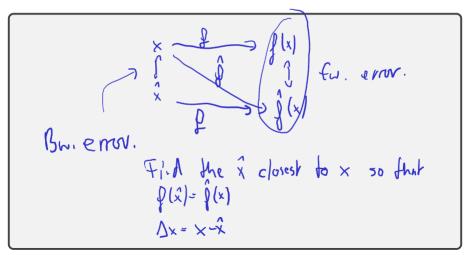
In finite-A, all noms are equivalent.

$$||\cdot|| \quad , \quad ||\cdot||^{*}$$

$$||\cdot|| \quad , \quad ||\cdot||^{*}$$

$$||\cdot|| \quad |\cdot|| \quad |\cdot|$$

Norms and Errors


If we're computing a vector result, the error is a vector. That's not a very useful answer to 'how big is the error'. What can we do?

abs error =
$$||\hat{x} - \hat{x}||$$
abs error \neq $||x|| - ||x||$

Forward/Backward Error

Suppose want to compute y = f(x), but approximate $\hat{y} = \hat{f}(x)$.

What are the forward error and the backward error?

Forward/Backward Error: Example

Suppose you wanted $y = \sqrt{2}$ and got $\hat{y} = 1.4$. What's the (magnitude of) the forward error?

$$|\Delta y| \sim |1.4 - 1.4|^{2} | = 0.0|42...$$
Rel. Fund. error
$$|\Delta y| = \frac{0.01..}{1.4|^{2}} \approx 0.0|$$

Forward/Backward Error: Example

Suppose you wanted $y = \sqrt{2}$ and got $\hat{y} = 1.4$. What's the (magnitude of) the backward error?

Find
$$\hat{x} = 1.4$$
 $\hat{x} = 1.96$

Backword error!

 $|\Delta x| = |1.96 - 2| = 0.04$

Flet, bwd.

 $\frac{|\Delta x|}{|x|} \approx 0.02$

Forward/Backward Error: Observations

What do you observe about the relative manitude of the relative errors?

Forward/Backward Error: Observations

What do you observe about the relative manitude of the relative errors?

- In this case: Got smaller, i.e. variation damped out.
- Typically: Not that lucky: Input error amplified.
- ► If backward error is smaller than the input error: result "as good as possible".

This amplification factor seems worth studying in more detail.

Sensitivity and Conditioning

Consider a more general setting: An input x and its perturbation \hat{x} .

Absolute Condition Number

Can you also define an absolute condition number?							