ful bu error scenane

bwd

errs

input/oul pat error. Schairer
$1 \leqslant$ firderor

$$
\operatorname{inpct} \quad \times \xrightarrow{\rho} f
$$

$f^{|t|}$ $\underset{f(i)}{1} \leftarrow$ ontpont

Sensitivity and Conditioning
Consider a more general setting: An input x and its perturbation \hat{x}.

$$
\begin{aligned}
& \text { red out iron } \leq K_{\text {rel }} \text {, rel input econ } \\
& \frac{|f(x)-f(\hat{x})|}{|f(x)|} \leq k_{1,1} \cdot \frac{|x \cdot \hat{x}|}{|x|} \\
& \operatorname{mmax}_{\uparrow} \frac{|f(x)-\rho(\hat{x})|}{|f(x)|} \int \frac{|x-\hat{x}|}{|x|}=k_{\text {re }} \\
& \text { (For which } x_{1} \hat{x} \text { ? (depends! all scaanos con berelevond) } \\
& (\vec{x}, \hat{1}) \in S
\end{aligned}
$$

Absolute Condition Number

Can you also define an absolute condition number?

Absolute Condition Number

Can you also define an absolute condition number?

Certainly:

$$
\kappa_{\mathrm{abs}}=\max _{x, \hat{x}} \frac{|f(x)-f(\hat{x})|}{|x-\hat{x}|}
$$

But: less commonly used than relative, because we typically care about relative error.

When not specified: Assume condition number means relative.

Interpreting a Condition Number

What does it mean for condition numbers to be small/large?

$$
\begin{aligned}
& \text { cond ur. } 5 \\
& \text { cond nr. } 5000
\end{aligned}
$$

Relate the (relative) condition number back to the setting of (relative) backward error.

Interpreting a Condition Number

What does it mean for condition numbers to be small/large?
If the condition number is. . .

- small: the problem well-conditioned or insensitive
- ... large: the problem ill-conditioned or sensitive

Can also talk about condition number for a single input x.
Relate the (relative) condition number back to the setting of (relative) backward error.

$$
\text { rel. onlpnt error } \leq k \text {. rel impel error }
$$

Example: Condition Number of Evaluating a Function
$y=f(x)$. Assume f differentiable.

$$
\Delta+C_{\hat{x}}^{x} \quad \Delta, l_{y}^{y} \cdot f(x)
$$

Demo: Conditioning of Evaluating tan [cleared]

Stability and Accuracy

Previously: Considered problems or questions.
Next: Considered methods, i.e. computational approaches to find solutions. When is a method accurate?

When is a method stable?

Stability and Accuracy

Previously: Considered problems or questions.
Next: Considered methods, ie. computational approaches to find solutions.
When is a method accurate?
Closeness of method output to true answer for unperturbed input.
When is a method stable?
so that we, con use
condition'

- "A method is stable if the result it produces is the exact answer for a nearby input.'
- The above is commonly called backward stability and is a stricter requirement than just the temptingly simple:
If the method's sensitivity to variation in the input is no (or not much) greater than that of the problem itself.

Getting into Trouble with Accuracy and Stability

How can I produce inaccurate results?
\square

Getting into Trouble with Accuracy and Stability

How can I produce inaccurate results?

- Apply an inaccurate method
- Apply an unstable method to a well-conditioned problem
- Apply any type of method to an ill-conditioned problem

In-Class Activity: Forward/Backward Error

In-class activity: Forward/Backward Error

$$
\frac{x \cdot f^{\prime}(x)}{f(x)}=\frac{\sin x}{\sin x}\left[\begin{array}{c}
\cos x \\
{\left[0, \frac{\pi}{2}\right]}
\end{array}\right.
$$

Wanted: Real Numbers. . . in a computer Computers can represent integers, using bits:

$$
23=1 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=(10111)_{2}
$$

How would we represent fractions?

anolher dounsile of fired point amout of rondij evros dapenals on mugntune
Eor. Ex. a number that ocaupics 27 birs
$23.625=$

Floating Point Numbers

Convert $13=(1101)_{2}$ into floating point representation.

What pieces do you need to store an FP number?

