HW2 ont
 point: oul of GY

$$
2^{0}+2^{-1}+2^{-2}+\cdots \quad \rightarrow 2
$$

exp range ($w / 8$ bis):

$$
-128 \ldots 127
$$

In real bite $Z^{+118} 2^{127}$
In real life 64 bit FP:

$$
-1022 \ldots 1023 \rightarrow 1 \mid \text { bids }
$$

$\begin{array}{ll}1 & \text { sign bit } \\ 52 & \text { bits significan }\end{array}$

$$
\begin{aligned}
23.625 & =(10111.101)_{2} \\
& =(1.0111101)_{2} 2^{4} \\
& =(0.1011101) \cdot 2^{5}
\end{aligned}
$$

\overparen{C} waste fuel: if rom lin, we would wat all bits ned for accuracy in the significand
"normalization": leading bit in the significand is drays 1
normulization \Rightarrow

$$
1 \leqslant \text { sinhticand <2 }
$$

Ideu: Don't womt to ofore loading 1 hit in sig. Bat: that mikes 0 antepresentable.

Floating Point Numbers

Convert $13=(1101)_{2}$ into floating point representation.

What pieces do you need to store an FP number?

Floating Point: Implementation, Normalization
Previously: Consider mathematical view of FP. (via example: $(1101)_{2}$)
Next: Consider implementation of FP in hardware.
Do you notice a source of inefficiency in our number representation?

Unrepresentable numbers?

Can you think of a somewhat central number that we cannot represent as

$$
x=(1 . \quad---------)_{2} \cdot 2^{-p} ?
$$

$$
\begin{aligned}
& \text { zero } \\
& G \text { use }(000 \ldots 0)_{1} \text { expound } \\
& \text { as special case to } \\
& \text { tum off leadij bit. } \\
& \text { in sig. }
\end{aligned}
$$

Demo: Picking apart a floating point number [cleared]

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored bits (5 total) in the significant and a stored exponent range of $[-7,8]$?
when leading 1 is tumenofr.

Subnormal Numbers

What is the smallest representable number in an FP system with 4 stored bits (5 total) in the significand and a stored exponent range of $[-7,8]$?

First attempt:

- Significand as small as possible \rightarrow all zeros after the implicit leading one
- Exponent as small as possible: -7

So:

$$
(1.0000)_{2} \cdot 2^{-7}
$$

Unfortunately: wrong.

Subnormal Numbers, Attempt 2

What is the smallest representable number in an FP system with 4 stored bits in the significand and a (stored) exponent range of $[-7,8]$?

Why learn about subnormals?
slow

Subnormal Numbers, Attempt 2

What is the smallest representable number in an FP system with 4 stored bits in the significand and a (stored) exponent range of $[-7,8]$?

- Can go way smaller using the special exponent (turns off the leading one)
- Assume that the special exponent is -7 .
- So: $(0.001)_{2} \cdot 2^{-7}$ (with all four digits stored).

Numbers with the special epxonent are called subnormal (or denormal) FP numbers. Technically, zero is also a subnormal.

Why learn about subnormals?

- Subnormal FP is often slow: not implemented in hardware.
- Many compilers support options to 'flush subnormals to zero'.

Underflow

- FP systems without subnormals will underflow (return 0) as soon as the exponent range is exhausted.
- This smallest representable normal number is called the underflow level, or UFL.
- Beyond the underflow level, subnormals provide for gradual underflow by 'keeping going' as long as there are bits in the significand, but it is important to note that subnormals don't have as many accurate digits as normal numbers.
Read a story on the epic battle about gradual underflow
- Analogously (but much more simply-no 'supernormals'): the overflow level, OFL.

Rounding Modes

How is rounding performed? (Imagine trying to represent π.)

$$
(\underbrace{1.1101010}_{\text {representable }} 11)_{2}
$$

$$
\begin{aligned}
& \text { - chop of extra digits } \\
& \text { - "round to nearest" }
\end{aligned}
$$

What is done in case of a tie? $0.5=(0.1)_{2}$ ("Nearest"?)

If you rona down always, might induce bias
"round toeven' : round dow half
Demo: Density of Floating Point Numbers [cleared]

Rounding Modes

How is rounding performed? (Imagine trying to represent π.)

$$
(\underbrace{1.1101010}_{\text {representable }} 11)_{2}
$$

What is done in case of a tie? $0.5=(0.1)_{2}$ ("Nearest'?)

Up or down? It turns out that picking the same direction every time introduces bias. Trick: round-to-even.

$$
0.5 \rightarrow 0, \quad 1.5 \rightarrow 2
$$

Demo: Density of Floating Point Numbers [cleared]

Smallest Numbers Above. . .

- What is smallest FP number > 1? Assume 4 stored bits (5 total) in the significand.

What's the smallest FP number >1024 in that same system?

Can we give that number a name?

Unit Roundoff

Unit roundoff or machine precision or machine epsilon or $\varepsilon_{\text {mach }}$ is...
the smallest number such that

$$
f \mid(1+\varepsilon)>1
$$

- Emuch deprads on rounding rule
- If the romaic rule has tie bealiving, then assume reading ap. actually: $\quad 1 \Psi_{+} z^{-53}=1 \leftarrow$ IE GU

$$
\varepsilon_{\text {mach }}=\eta^{-53}
$$

FP: Relative Rounding Error
What does this say about the relative error incurred in floating point calculations?

To get from $x_{f 1}$ to the next bigger represoulable number: $x_{t 1}\left(1+\varepsilon_{\text {nail }}\right)$
relative readily error:

$$
\left|\frac{\hat{x}-x}{x}\right|=|x \underbrace{\left(1+\varepsilon_{m n} 1\right)-x}_{x}|=\varepsilon_{m \text { ain }}
$$

Gun is an upper bound on relative rounding error.

FP: Machine Epsilon

What's machine epsilon for double-precision floating point with round-to-nearest? (52 stored bits in the significand, 53 total)

Demo: Floating Point and the Harmonic Series [cleared]

Implementing Arithmetic
How is floating point addition implemented?
Consider adding $a=(1.101)_{2} \cdot 2^{1}$ and $b=(1.001)_{2} \cdot 2^{-1}$ in a system with three stored bits (four total) in the significand.

Implementing Arithmetic

How is floating point addition implemented?
Consider adding $a=(1.101)_{2} \cdot 2^{1}$ and $b=(1.001)_{2} \cdot 2^{-1}$ in a system with three stored bits (four total) in the significand.

Rough algorithm:

1. Bring both numbers onto a common exponent
2. Do grade-school addition from the front, until you run out of digits in your system.
3. Round result.

$$
\begin{array}{rll}
a & =1 . & 101 \cdot 2^{1} \\
b & =0 . & 01001 \cdot 2^{1} \\
a+b & \approx 1 . & 111 \cdot 2^{1}
\end{array}
$$

Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude?
As an example, consider $a=(1.1011)_{2} \cdot 2^{0}$ and $b=(1.1010)_{2} \cdot 2^{0}$.

Demo: Catastrophic Cancellation [cleared]

