)

Problems with FP Addition

What happens if you subtract two numbers of very similar magnitude? As an example, consider $a = (1.1011)_2 \cdot 2^0$ and $b = (1.1010)_2 \cdot 2^0$.

Demo: Catastrophic Cancellation [cleared]

(lel. error
$$v_{5}$$
 digits
 1 accurate
 $| \text{ rd. error} | \leq M$
 $| \text{ significant}$
 $| \text{ dijils}$
(=) "The result has $-\text{Jog}_{10} M$ a.s.d"
 $\times (1:)$
 $\times (1:)$

Demos:

- Density
- Harmonic series
- FP vs Program Logic

Supplementary Material

- ► Josh Haberman, Floating Point Demystified, Part 1
- David Goldberg, What every computer programmer should know about floating point
- Evan Wallace, Float Toy
- ► Julia Evans, Examples of Floating Point Problems, 2022

Outline

Introduction to Scientific Computing

Systems of Linear Equations Theory: Conditioning Methods to Solve Systems LU: Application and Implementation

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Solving a Linear System

Given:

- ▶ *m* × *n* matrix *A*
- ► *m*-vector **b**

What are we looking for here, and when are we allowed to ask the question?

Solving a Linear System

Given:

- ▶ *m* × *n* matrix *A*
- ► *m*-vector **b**

What are we looking for here, and when are we allowed to ask the question?

```
Want: n-vector \boldsymbol{x} so that A\boldsymbol{x} = \boldsymbol{b}.
```

- Linear combination of columns of A to yield **b**.
- Restrict to square case (m = n) for now.
- Even with that: solution may not exist, or may not be unique.

Unique solution exists iff A is *nonsingular*.

Next: Want to talk about conditioning of this operation. Need to measure distances of matrices.

Cincarity of matrices? $A(\kappa \tilde{x}) = \alpha (A\tilde{x})$ $A\left(\frac{1}{x+y}\right) = A \vec{x} + A \vec{y}$

Provide some intuition for the matrix norm.

Identifying Matrix Norms

What is $||A||_1$? $||A||_{\infty}$?

$$\|\mathbf{x}\|_{\tilde{\mathbf{1}}} \lesssim |\mathbf{x}_i| \qquad \|\mathbf{x}\|_{\omega} \simeq \max |\mathbf{x}_i|$$

How do matrix and vector norms relate for
$$n \times 1$$
 matrices?

.

Demo: Matrix norms [cleared]

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

$$\blacktriangleright ||A|| > 0 \Leftrightarrow A \neq 0.$$

•
$$\|\gamma A\| = |\gamma| \|A\|$$
 for all scalars γ .

▶ Obeys triangle inequality $||A + B|| \le ||A|| + ||B||$

But also some more properties that stem from our definition: