Matrix norms "submultiplicativity"
$$\|\tilde{\mathbf{x}}\|_{2}$$
 $\|A\tilde{\mathbf{x}}\|_{2} \leq \|A\|_{m} \|\tilde{\mathbf{x}}\|_{2}$

Identifying Matrix Norms

What is $||A||_1$? $||A||_{\infty}$?

Demo: Matrix norms [cleared]

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

$$\blacktriangleright ||A|| > 0 \Leftrightarrow A \neq 0.$$

•
$$\|\gamma A\| = |\gamma| \|A\|$$
 for all scalars γ .

▶ Obeys triangle inequality $||A + B|| \le ||A|| + ||B||$

But also some more properties that stem from our definition:

$$||A \times || \leq ||A|| ||X||$$
$$||A \cup ||A \cup ||A$$

Conditioning
What is the condition number of solving a linear system
$$Ax = b$$
?

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = b + \Delta b = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x = \Delta b$$

$$A(x + \Delta x) = A \Delta x$$

$$A(x$$

Conditioning of Linear Systems: Observations

Showed κ (Solve $A\mathbf{x} = \mathbf{b}$) $\leq ||A^{-1}|| ||A||$. I.e. found an *opper bound* on the condition number. With a little bit of fiddling, it's not too hard to find examples that achieve this bound, i.e. that it is *sharp*

So we've found the *condition number of linear system solving*, also called the condition number of the matrix *A*:

$$\operatorname{cond}(A) = \kappa(A) = \|A\| \|A^{-1}\|.$$

 $\frac{\|\Delta b\|}{\|b\|} \leq \kappa(A) \frac{\|\Delta x\|}{\|x\|}$

Residual Vector

What is the residual vector of solving the linear system

$$b = Ax?$$
 $\stackrel{\frown}{\times}$ some proposed sol.
 $\overrightarrow{B} - A\overrightarrow{x} = \overrightarrow{r}$
residhed vector is computable

Residual and Error: Relationship

How do the (norms of the) residual vector \mathbf{r} and the error $\Delta \mathbf{x} = \mathbf{x} - \hat{\mathbf{x}}$ relate to one another?

Changing the Matrix

So far, only discussed changing the RHS, i.e. $A\mathbf{x} = \mathbf{b} \rightarrow A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. The matrix consists of FP numbers, too—it, too, is approximate. I.e.

$$A\mathbf{x} = \mathbf{b} \quad o \quad \widehat{A}\widehat{\mathbf{x}} = \mathbf{b}.$$

What can we say about the error due to an approximate matrix?