Exam 1 in aboul two weeks:
Go to prairiplest. ory to sichedule
H」 2 ane last night
HW3
Pleage ne the helpdesh feature!

Mabrix norms "submultiplicativity"
$\|x\|_{\substack{1 \\ 2 \\ \infty}}$

$$
\|A \vec{x}\|_{v} \leqslant \underbrace{\|A\|_{m}\|\vec{x}\|_{v}}
$$

$$
\underbrace{\max ^{\|A \vec{x}\|_{v}}}_{\substack{x \neq 0}}\left\|\hat{\imath}^{n}\right\|_{v}
$$

malt. nom inducellby vector nom
Goal! - build on min. to get

- conlitioniy bonds
- error bond for change a matrix

Identifying Matrix Norms

What is $\|A\|_{1} ?\|A\|_{\infty}$?

$$
\|A\|_{1}=\max \sum_{i}\left|A_{i j}\right| \quad\|A\|_{\infty}=\max _{i} \sum_{j}\left|A_{i^{\prime}}\right|
$$

How do matrix and vector norms relate for $n \times 1$ matrices?

Demo: Matrix norms [cleared]

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- $\|A\|>0 \Leftrightarrow A \neq 0$.
- $\|\gamma A\|=|\gamma|\|A\|$ for all scalars γ.
- Obeys triangle inequality $\|A+B\| \leq\|A\|+\|B\|$

But also some more properties that stem from our definition:

$$
\begin{aligned}
& \|A x\| \leq\|A\|\|x\| \\
& \|A B\| \leq\|A\|\|B\|
\end{aligned}
$$

Conditioning
What is the condition number of solving a linear system $A x=\stackrel{i}{\boldsymbol{b}}$?

showed: $K(A)$ is an upper bound for cold. of lin. sodom solving
To show sharpness: need examples

$$
\left.\rightarrow h_{w}\right\}
$$

Actually is the cond number

Conditioning of Linear Systems: Observations

Showed $\kappa($ Solve $A \underline{x}=\boldsymbol{b}) \leq \# A^{-1} \#\|A\|$.
I.e. found an upper bound on the condition number. With a little bit of fiddling, it's not to harch to find examples that achieve this bound, i.e. that it is sharp
Sowe've found the condition number of linear system solving, also called the condition number of the matrix A :

$$
\operatorname{cond}(A)=\kappa(A)=\|A\|\left\|A^{-1}\right\| .
$$

Conditioning of Linear Systems: More properties

$$
\underset{K}{\operatorname{tie}(A)}=\|A\|\left\|A^{-1}\right\|
$$

cons is relative to a given norm. So, to be precise, use

$$
\underset{\text { conn }_{2}}{\mathcal{C}} \underset{\operatorname{cond}_{\infty}}{\mathcal{C}} \quad K(A)=\|A\|\left\|A^{-1}\right\|
$$

- If A^{-1} does not exist: $\operatorname{cond}(A)=\infty$ by convention.

What is $\kappa\left(A^{-1}\right)$?
Assume
invertiblity

matues:

$$
\begin{aligned}
& A \stackrel{\rightharpoonup}{\vec{a}}=\vec{b} \\
& \frac{\|\Delta b\|}{\|b\|} \leq k(A) \frac{\|\Delta x\|}{\|x\|}
\end{aligned}
$$

Residual Vector

What is the residual vector of solving the linear system

How close is x to \hat{x} ?

Residual and Error: Relationship
How do the (norms of the) residual vector \boldsymbol{r} and the error $\Delta \boldsymbol{x}=\boldsymbol{x}-\hat{\boldsymbol{x}}$ relate to one another?

$$
\begin{aligned}
\|\Delta \vec{x}\|=\|\vec{x}-\hat{x}\|=\|\underbrace{A^{-1} A}_{1 d}(\vec{t}-\vec{x})\| & =\left\|A^{-1}(\vec{b}-A \vec{x})\right\| \\
& =\left\|A^{-1} \vec{r}\right\| \\
\begin{aligned}
& \| \frac{\Delta \hat{x} \|}{\|\hat{x}\|}=\left\|A^{-1} \vec{r}\right\| \\
&\|\hat{x}\|
\end{aligned} \frac{\left\|A^{-1}\right\|\|\vec{r}\|}{\left\|\hat{x}^{3}\right\|} & \subseteq K(A) \frac{\|\vec{r}\|}{\|A\|\|\vec{x}\|} \\
& \subseteq K\left(A+\frac{\|\vec{r}\|}{\|A \hat{x}\|}\right.
\end{aligned}
$$

Changing the Matrix

So far, only discussed changing the RHS, i.e. $A \boldsymbol{x}=\boldsymbol{b} \rightarrow A \widehat{\boldsymbol{x}}=\widehat{\boldsymbol{b}}$. The matrix consists of FP numbers, too-it, too, is approximate. I.e.

$$
A \boldsymbol{x}=\boldsymbol{b} \quad \rightarrow \quad \widehat{A} \widehat{\boldsymbol{x}}=\boldsymbol{b} .
$$

What can we say about the error due to an approximate matrix?

