HW3 due tomorrow
Exam 1 stants in 10. ish dys
Gouls:

- matrix cond nt.
- 7-horm (orthogonal mat, SVD revend)
- solve (tri, Canss, Lh)

Mutrix cond. ur.
Ceroor prop.
Solve $A \vec{x}-b ;$ rel.eviar in ${ }_{x}^{3} \leq$
matue $\vec{b}=(-\vec{x})$; rel.eviorint $\leqslant k$ rel error is \vec{x}

Residual and Error: Relationship

How do the (norms of the) residual vector \boldsymbol{r} and the error $\Delta \boldsymbol{x}=\boldsymbol{x}-\widehat{\boldsymbol{x}}$ relate to one another?
(see abort)

Changing the Matrix
So far, only discussed changing the RHS, i.e. $A \boldsymbol{x}=\boldsymbol{b} \rightarrow A \widehat{\boldsymbol{x}}=\widehat{\boldsymbol{b}}$.
The matrix consists of FP numbers, too-it, too, is approximate. I.e.

$$
A x=b \rightarrow \hat{A} \widehat{x}=b
$$

What can we say about the error due to an approximate matrix?

$$
\begin{aligned}
\Delta \vec{x}=\vec{x}-\hat{\vec{x}}=A^{-1} A(\vec{x}-\hat{\vec{x}}) & =A^{-1}(\vec{b}-A \hat{x}) \\
& =A^{-1}(\hat{A} \hat{\vec{x}}-A \hat{x}) \\
& =A^{-1}(\hat{A}-A) \hat{\vec{x}} \\
\|\Delta \dot{x}\|=\left\|A^{-1} \Delta A \vec{x}\right\| & \leq\left\|A^{-1}\right\|\|\Delta A\|\|\vec{x}\| \\
& =\left\|A^{-1}\right\|\|A\| \frac{\|\Delta A\|}{\|A\|}\|\vec{x}\| \\
& =k(A)\|A\|^{\|}\|\hat{\hat{x}}\|
\end{aligned}
$$

$$
\frac{\|\Delta \hat{x}\|}{\mid \hat{x} \|} \leqslant k(A) \frac{\left\|\Delta A^{\prime}\right\|}{\| A h}
$$

What if multiple things are wrong?
\rightarrow Resulting error terms will be "error A^{2}, "error B^{n} \rightarrow typically small
\rightarrow shruy,ignore

Changing Condition Numbers
Once we have a matrix A in a linear system $A \boldsymbol{x}=\boldsymbol{b}$, are we stuck with its condition number? Or could we improve it?
to rescale rows: left precend
to rescale cols: right precond,
What is this called as a general concept? (if k matters, always a general concept? stark by reicaliy
Sone matrix ${ }^{6} M$:
"left preconditioning" $(M A)_{x}^{\vec{x}}=M B \Leftrightarrow A_{x}=\vec{b}$
Hope: $K(n A)<k(A)$
possible danside: MA, M6

- need to he confined
- may he ib acc urabo

$$
\begin{aligned}
\text { right precond" } A M) \vec{y} & =\vec{b} \\
\vec{x} & =M_{\vec{y}}^{\vec{y}}
\end{aligned} \quad \Leftrightarrow \vec{x}=\vec{b}
$$

(1) Solve for \vec{y} with ($A M$) right peecond sys
(2) Recorer $\vec{x}=M_{\vec{y}}$.

Recap: Orthogonal Matrices

What's an orthogonal (=orthonormal) matrix?
One that satisfies $Q^{T} Q=I$ and $Q Q^{\top}=I . \quad \Rightarrow \quad Q^{\top}=Q^{-1}$

$$
\|\vec{x}\|_{2}^{2}=\vec{x}+\vec{x}
$$

Euclidean lash
"Rotation and Flipping din' tr cane

Singular Value Decomposition (SVD)
What is the Singular Value Decomposition of an $m \times n$ matrix?

Computing the 2-Norm

$$
A=U \Sigma r^{+}
$$

Using the SVD of A, identify the 2 -norm.
arid
Using the SVD of A, identify the 2 -norm. with $\|A\|_{2}$

Express the matrix condition number $\operatorname{cond}_{2}(A)$ in terms of the SVD:

$$
\begin{aligned}
& R_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}-\sigma_{1} / \sigma_{n} \\
& A^{-1}=\left(U \Sigma V^{\top}\right)^{-1}=V^{-\top} \varepsilon^{-1} U^{-1}=V \varepsilon^{-1} U^{\top} \\
& G \quad\left\|A^{\top}\right\|_{2}=\frac{1}{\sigma}
\end{aligned}
$$

If A is not invertible $\sigma_{n}, \delta_{n}=0 \Rightarrow k_{2}(A)=\sigma_{1} / 0=\infty$

Not a matrix norm Frobenius
The 2-norm is very costly to compute. Can we make something simpler?
\square
What about its properties?

Frobenius Norm: Properties

Is the Frobenius norm induced by any vector norm?
\square
How does it relate to the SVD?

