Exam 1; content three and lec 8 HWY (short to allow example) Gouls: Frobenins Allz = Ome X 7 SVD? expensive - Solve k(A) = ||A|| ||A''|| < 1?||AA''|| = ||I|| = ||I||1AB1 5 1A1 1B1

Computing the 2-Norm

Using the SVD of A, identify the 2-norm.

Omar

Express the matrix condition number $cond_2(A)$ in terms of the SVD:

 σ_1/σ_n

Not a matrix norm: Frobenius

The 2-norm is very costly to compute. Can we make something simpler?

$$\|A\|_{\star} = \sqrt{\sum_{i,j} |A_{i,j}|^2}$$

What about its properties?

- definite ness
-
$$|| \neq A ||_{F} = || || A ||_{F}$$

- bring le lineg.
- $|| A B ||_{F} \leq || A ||_{F} || 0 ||_{F} (Cauchy - 5chwar)$

$$A = U \in V^{r}$$

$$\|A\|_{\tau} = \|E\|_{\tau} = \sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}$$

$$\|QA\|_{\tau} = \|A\|_{t}$$

$$\|QA\|_{\tau} = \|A\|_{\tau}$$

$$\|QA\|_{\tau} = \|A\|_{\tau}$$

$$La. norm (A) \rightarrow Fro$$

$$(A, "Fro")$$

Solving Systems: Simple cases

Solve $D\mathbf{x} = \mathbf{b}$ if D is diagonal. (Computational cost?) $\rightarrow O(h^5)$

$$x_i = \frac{b_i}{d_{ii}}$$
 $O(n)$ as $n \to \infty$

Solve $Q\mathbf{x} = \mathbf{b}$ if Q is orthogonal. (Computational cost?) $\bigcirc \in \mathbb{N}^{h \times h}$

$$Q_{x}^{2} = G | Q^{T} \cdot Q^{T} \otimes Q^{T$$

Given SVD $A = U\Sigma V^T$, solve $A\mathbf{x} = \mathbf{b}$. (Computational cost?)

$$(A \gtrsim); = \underset{j}{\underset{n \text{ multiplications}}{\overset{n}{\underset{n \text{ multiplications}}{\underset{n \text{ outputs}}{\overset{n-1}{\underset{n \text{ additions}}}}} i \in \{1, \dots, n\}$$

Solving Systems: Triangular matrices

Solve

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{33} & a_{34} \\ a_{44} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

Gaussian Elimination

Demo: Vanilla Gaussian Elimination [cleared] What do we get by doing Gaussian Elimination?

REF

How is that different from being upper triangular?

What if we do not just eliminate downward but also upward?

LU Factorization

Solving Ax = b

Does LU help solve $A\mathbf{x} = \mathbf{b}$?

(12 Un = A12 - J21 U12 RHS 1 recurse to (1 fair of slie (n-1) × (n-1)

Computational Cost

What is the computational cost of multiplying two $\tilde{n} \times n$ matrices?

•
$$u_{11} = a_{11}, u_{12}^T = a_{12}^T$$
. $O(u)$
• $\ell_{21} = a_{21}/u_{11}$. $O(u)$
• $L_{22}U_{22} = A_{22} - \ell_{21}u_{12}^T$. $E O(u)$
• $U_{11} = a_{11}, u_{12}^T = a_{12}^T$. $O(u)$
• $U_{11} = a_{11}, u_{12}^T = a_{12}^T$. $O(u)$

81.31

What is the computational cost of carrying out LUJ factorization on an $n \times n$ matrix?

Demo: Complexity of Mat-Mat multiplication and LU [cleared]

LU: Failure Cases?

Is LU/Gaussian Elimination bulletproof?