HWY
Exam $1 \rightarrow$ starts Friday
Out of town 9/26, lecture as normal Feed back

Computational Cost

What is the computational cost of multiplying two $n \times n$ matrices?

$O\left(n^{3}\right)$

- $u_{11}=a_{11}, \boldsymbol{u}_{12}^{T}=\boldsymbol{a}_{12}^{T}$.
- $\ell_{21}=a_{21} / u_{11}$.

$$
\operatorname{Cost}(n)=\alpha n^{3}+\operatorname{COT}
$$

- $L_{22} U_{22}=A_{22}-\ell_{21} \boldsymbol{u}_{12}^{T}$.

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

$$
O\left(n^{3}\right)
$$

Demo: Complexity of Mat-Mat multiplication and LU [cleared]

LU: Failure Cases?
Is LU/Gaussian Elimination bulletproof?

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
l_{1} & 1 \\
l_{11}
\end{array}\right)\left(\begin{array}{ll}
u_{11} & n_{11} \\
0 & n_{12} \\
0 & 1 \\
2 & 1
\end{array}\right) \\
& n_{11}=0 \\
& y_{11} \cdot l_{21}+1 \cdot 0=2 \\
& 0 \\
& \text { all } 0,1 \\
& \begin{array}{l}
\text { exactly } \\
\text { port roup } \\
\text { ane } 1 \\
\text { col }
\end{array}
\end{aligned}
$$

Saving the LU Factorization
What can be done to get something like an LU factorization?

Demo: LU Factorization with Partial Pivoting [cleared]

Saving the LU Factorization

What can be done to get something like an LU factorization?

Idea from linear algebra class: In Gaussian elimination, simply swap rows, equivalent linear system.

- Good idea: Swap rows if there's a zero in the way
- Even better idea: Find the largest entry (by absolute value), swap it to the top row.
The entry we divide by is called the pivot.
- Swapping rows to get a bigger pivot is called partial pivoting.
- Swapping rows and columns to get an even bigger pivot is called complete pivoting. (downside: additional $O\left(n^{2}\right)$ cost per step to find the pivot!)

Demo: LU Factorization with Partial Pivoting [cleared]

Cholesky: LU for Symmetric Positive Definite
LU can be used for SPD matrices. But can we do better?

More cost concerns
What's the cost of solving $A \boldsymbol{x}=\boldsymbol{b}$?
(1) (u) factor $A \rightarrow O\left(n^{3}\right)$
(2) Fw/ bw subit $\rightarrow O\left(n^{2}\right) \quad O\left(n^{3}\right)$

What's the cost of solving $A \boldsymbol{x}=\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}$?
(2) $n \times$ fiw $/ b_{w}$ subst $\rightarrow O\left(n^{3}\right) \mid O\left(n^{3}\right)$

What's the cost of finding A^{-1} ?

$$
\left.\begin{array}{rl}
A \cdot A^{-1} & =I \\
A \cdot X & =I \in \text { solve col-by-col }
\end{array}\right\} O\left(n^{3}\right)
$$

Cost: Worrying about the Constant, BLAS $O\left(n^{3}\right)$ really means

$$
\alpha \cdot \eta^{3}+\beta \cdot n^{2}+\gamma \cdot n+\delta .
$$

All the non-leading and constants terms swept under the rug. But: at least the leading constant ultimately matters.
Shrinking the constant: surprisingly hard (even for 'just' matmul)
Idea: Rely on library implementation: BLAS (Fortran)
Level $1 \quad \boldsymbol{z}=\alpha \boldsymbol{x}+\boldsymbol{y} \quad$ vector-vector operations
$O(n)$
?axpy
Level $2 \boldsymbol{z}=A \boldsymbol{x}+\boldsymbol{y} \quad$ matrix-vector operations
$O\left(n^{2}\right)$
?gemv
gem
Level $3 C=A B+\beta C$ matrix-matrix operations

$$
O\left(n^{3}\right)
$$

> ?sem, ?trim

Show (using perf): numpy matmul calls BLAS dgemm

LAPACK

LAPACK: Implements 'higher-end' things (such as LU) using BLAS Special matrix formats can also help save const significantly, e.g.

- banded
- sparse
- symmetric
- triangular

Sample routine names:

- dgesvd, zgesdd
- dgetrf, dgetrs

LU on Blocks: The Schur Complement

Given a matrix

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],
$$

can we do 'block LU' to get a block triangular matrix?

