$\therefore 30$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]} \\
& \underbrace{a_{21}}_{\text {all 2ens }}=\underbrace{u_{n}}_{0} \underbrace{l_{21}^{0}}_{\text {anythin, mangbe } 0}
\end{aligned}
$$

cond: $\frac{\|\vec{y}-\hat{y}\|}{\|\vec{y}\|} \leqslant k \frac{\|\vec{x}-\hat{z}\|}{\|\vec{x}\|}$
buerou
To bond fu erroo: D bond bw errov $\left\|_{x-x}\right\| \| k h$ Dusc cond bound
\& "true answer / \tilde{f} "method"
cone.
accuracy
(bi) s ability
abs error $|y-\tilde{b}|$
rel error $\frac{|y-5|}{|y|}$

$$
\begin{array}{ll}
f g & k(f \circ g) k_{k} k_{j} \frac{\|(x)}{k_{x \mid l}} \\
k_{c} k_{g} & (f \circ g)(x)=f(g(x))
\end{array}
$$

$$
\begin{aligned}
& k(A B) \\
& k(A) \quad k(D) \\
& \| A B)^{-}\|=\| A B\left\|n B^{-1} A^{*}\right\| \\
& \text { (c) }\|A h\| B\left\|\left\|B^{-1}\right\|\right\| A^{-1} \| \\
& =K(A) K(B \\
& 1-K(F)<K(A) \cdot n\left(A^{-1}\right) \\
& \pi \cdot 10^{100+\frac{\pi}{2}} \\
& \text { subne hill ace: } \\
& \begin{array}{l}
\text { nom } 11 \\
\text { subn } 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { GJ: }
\end{aligned}
$$

LU on Blocks: The Schur Complement
Given a linear system

$$
\left.\left[\begin{array}{ll|l}
A & B & \boldsymbol{b}_{1} \\
C & D & b_{2}
\end{array}\right],\right]_{0}^{-C A^{-1}:}=A^{-1} C .
$$

can we do 'block Gaussian elimination' to get a block triangular matrix?

$$
\begin{array}{ll}
& \left(-C A^{-1}\right) A=-C \\
{ }^{n} \text { Schur } \\
\text { Compleat } r^{3}
\end{array} \quad\left[\begin{array}{ll}
A & B \\
0 & 0-C A^{-1 B}
\end{array} \left\lvert\, \begin{array}{l}
\vec{b}_{1} \\
b_{2}-C A^{-1} b_{1}
\end{array}\right.\right] .
$$

LU: Special cases

$$
P A=\angle U
$$

What happens if we feed a non-invertible matrix to LU?

What happens if we feed LU an $m \times n$ non-square matrices?

Round-off Error in LU without Pivoting

Consider factorization of $\left[\begin{array}{ll}\epsilon & 1 \\ 1 & 1\end{array}\right]$ where $\epsilon<\epsilon_{\text {mach }}$:

Round-off Error in LU with Pivoting

Permuting the rows of A in partial pivoting gives $P A=\left[\begin{array}{ll}1 & 1 \\ \epsilon & 1\end{array}\right]$

Changing matrices
Seen: LU cheap to resolve if RHS changes. (Able to keep the expensive bit, the LU factorization) What if the matrix changes?

$$
\begin{aligned}
& v \Leftrightarrow \vec{x}-\tilde{A}^{-1} \vec{b} \\
& =A^{-1} \vec{b}-\frac{A^{-1} \vec{u} \vec{v}^{+} A^{-1}}{1+\vec{v}^{\top} A^{-1} \vec{u}^{-}} \vec{b} \\
& \text { (expasive) }=A^{-1} \vec{b}^{-}-\frac{\left(A^{-1}\left(\vec{n} \vec{v}^{+}\right) A^{-1}\right.}{1+\vec{v}^{\top} A^{-1} \vec{n}^{2}} \vec{b} \\
& \text { (chenpi) } \left.\quad=\left(A^{-1} b^{-}\right)-\frac{\left(A^{-1}\left(\vec{n}^{2}\left(\vec{v}^{+}\left(A^{1}-\frac{k}{b}\right)\right)\right)\right.}{1+\vec{v}^{\top}\left(A^{-1} c^{-}\right)}\right) \\
& \text {Solve on } \tilde{A}=A+n 0^{2 \pi} \text { at } O\left(厶^{2}\right) \cos t \text {. }
\end{aligned}
$$

In-Class Activity: LU

In-class activity: LU and Cost

