- Exanl results : nod yet
- Ouit deadlines
- Cluss flo
$A \vec{x} \longrightarrow \vec{b}$
normale: $A^{\sigma} A \vec{x}=A^{\sigma} \vec{B}$
Gouls: G why not?
- Cond LSQ
$-Q R=A$
- Houscholdar refl.

Sensitivity and Conditioning of Least Squares

Relate $\|A x\|_{2}$ and $\|\boldsymbol{b}\|_{\text {with }} \theta$ via trig functions.

$$
\cos \theta=\frac{\left\|A_{x}\right\|_{L}}{\left\|_{6}\right\|_{2}}
$$

Sensitivity and Conditioning of Least Squares (II) Solve $A \geqslant 05$ Derive a conditioning bound for the least squares problem. $\left.\quad \frac{\|\Delta x\|}{\|x\|} \leq k(A) \| \Delta b\right)$

$$
\begin{aligned}
& R_{2}(A)=\|A\|\left\|A^{-1}\right\| \text { if square \& inv. } \\
& K_{2}(A)=\infty \quad \text { if square \& noting. } \\
& \left.\begin{array}{l}
r_{2}(A)=0, / \sigma_{n}=\|A\| \| A+1 \mid \\
k_{2}(A)=\infty
\end{array} \right\rvert\, \\
& \text { if T\&s \& inter rank } \\
& \& \text { not-inve } \\
& \text { nor fun } \\
& \text { rock } \\
& \Leftrightarrow \begin{array}{l}
A \vec{x}=\vec{b} \\
u \varepsilon v i \vec{x}=b
\end{array} 0 \\
& \Leftrightarrow \quad(\varepsilon) b_{y}^{r}=u^{r} \vec{b} \quad \vec{b}=V^{T}{ }^{2} \\
& \text { bocolspan (A) } \\
& \Leftrightarrow \text { "bottom parl } \\
& \text { of lib is } \\
& \text { darn }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \square^{2} 1 /\left[\begin{array}{l}
x_{1} \\
x_{2} \\
3
\end{array}\right] \\
& \text { conn of solving } \\
& \begin{array}{c}
\sum_{\text {top }} \vec{y}-4 \Gamma \vec{b} \\
\sum_{i=0}^{a} ?
\end{array} \\
& \sigma_{1} / \sigma_{n}=\|A\|_{2}\left\|A^{\top}\right\|_{2} \\
& \text { exercise for } \\
& \text { the radwl } \\
& A \underset{x}{\sim}=5
\end{aligned}
$$

$A \vec{x} \cong \vec{b} \quad \Leftrightarrow \quad$ find \vec{x} so that

$$
\|A \vec{x}-\vec{b}\| \xrightarrow[2]{ } \rightarrow m!
$$

$\min _{v}\left\||A x-b|_{2}=\operatorname{mill}_{k} U \varepsilon v^{\top} \vec{x}-\vec{b}\right\|_{2}$

$$
-\min ^{\prime} \| u^{r}\left(u \varepsilon r^{\sigma} \bar{x}-\varepsilon\right)^{2}
$$

$$
=m_{x}\left\|_{\|} \varepsilon V^{r_{x}}-U^{T}\right\|_{6} \|_{2}
$$

$$
\left(y=v^{\top} T_{x}\right)-\min _{y}\left\|\sum_{v^{\prime}}-u_{u^{\top} b}{ }^{\top}\right\|_{2}
$$

$$
\min _{y}\| \|\left(\begin{array}{c}
a_{1} \\
0^{n} \\
0^{\prime}
\end{array}\right) \vec{y}-\| \|_{2}
$$

$$
\text { find } \begin{aligned}
\vec{y} & =\varepsilon_{\text {top }}^{-1} u^{\top} \vec{b} \\
\bar{x} & =V \sum_{\text {top }}^{-1} u^{\top} \vec{b}
\end{aligned}
$$

Sensitivity and Conditioning of Least Squares (III)
Any comments regarding dependencies?
Uh live solve, depends on $b(A)$ and b
What about changes in the matrix?

$$
\begin{aligned}
& \| \frac{\Delta x \|}{\|x\|} \leqslant\left(\operatorname{cond}(A)^{2} \tan \theta+\operatorname{cond(A)}\right] \frac{\|\Delta A\|}{\|A\|} \\
& \text { two cases : } \tan (\theta) \text { small or or not. }
\end{aligned}
$$

Transforming Least Squares to Upper Triangular

Suppose we have $A=Q R$, with Q square and orthogonal, and R upper triangular. This is called a $Q R$ factorization.
How do we transform the least squares problem $A \boldsymbol{x} \cong \boldsymbol{b}$ to one with an upper triangular matrix?

$$
\begin{aligned}
& \min \|A x-b\|_{2} \\
& =\min _{\dot{2}}^{x}\|Q \Omega \stackrel{\rightharpoonup}{r}-b\|_{L} \\
& -\min _{x} \| O^{r}\left(Q \Omega_{x}-b\left\|_{1}=\min _{x}\right\| \Omega \vec{x}-Q^{\top} b \|_{2}\right.
\end{aligned}
$$

Simpler Problems: Triangular
What do we win from transforming a least-squares system to upper triangular form?

$$
\stackrel{y}{x}=\left\|x_{2}^{x_{2}}\right\| x\left\|_{2}^{2}=\right\| x_{1}\left\|^{2}+\right\| x_{2} \|^{3}
$$

\square
How would we minimize the residual norm?

$$
\begin{aligned}
&\|\vec{r}\|_{i}^{2}=\|A x-b\|_{2}^{2}=\left\|(Q+b)_{\text {top }}-R_{\text {top }} \vec{x}\right\| R^{2} \\
&+\left\|\left(Q^{\top} b\right)_{\text {baton }}\right\|_{2}^{2} \\
&\left.\operatorname{ser} \vec{x}=R_{\text {top }}^{-1}\left(Q^{\Gamma} b\right)=J\right)_{\text {top }}\left\|\left(Q^{+} b\right)_{\text {top }}-R_{\text {top }} \vec{x}\right\|=0
\end{aligned}
$$

Computing QR

- Gram-Schmidt
- Householder Reflectors
- Givens Rotations
\checkmark Demo: Gram-Schmidt-The Movie [cleared] (shows modified G-S) Demo: Gram-Schmidt and Modified Gram-Schmidt [cleared]
\checkmark Demo: Keeping track of coefficients in Gram-Schmidt [cleared]
Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision arithmetic because of roundoff.

NOTE: Textbook makes further modification to 'modified’ Gram-Schmidt:

- Orthogonalize subsequent rather than preceding vectors.
- Numerically: no difference, but sometimes algorithmically helpful.

Economical/Reduced QR

Is $Q R$ with square Q for $A \in \mathbb{R}^{m \times n}$ with $m>n$ efficient?

