Exam 1
Japyter like hrechage $\oplus 1$ 1 pt.
look at exam in office hours
how hints \rightarrow hus 6 pl

$$
\underbrace{n}_{n}
$$

$$
\begin{aligned}
& A=U \varepsilon V^{\top} \\
& m \times n m>n \\
& A \dot{x} \xlongequal{\bullet} \stackrel{B}{ }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{r}=\sum_{i=n+1}^{m}\left(r^{\top} u_{i}\right) \vec{u}_{i}
\end{aligned}
$$

$$
\begin{aligned}
&\left\|A_{x}-b\right\|_{2} \\
&=\left\|Q^{r}\left(O n_{x}-b\right)\right\|_{1}=
\end{aligned}
$$

Computing QR

- Gram-Schmidt
- Householder Reflectors
- Givens Rotations

Demo: Gram-Schmidt-The Movie [cteared] (shows modified G-S)
Demo: Gram-Schmidt and Modifiect Gram-Schmidt [cleared]
Demo: Keeping track of coefficients in Gram-Schmidt [cleared]
Seen: Even modified Gram-Schmidt still unsatisfactory in finite precision arithmetic because of roundoff.

NOTE: Textbook makes further modification to 'modified' Gram-Schmidt:

- Orthogonalize subsequent rather than preceding vectors.
- Numerically: no difference, but sometimes algorithmically helpful.

Economical/Reduced QR

Is $Q R$ with square Q for $A \in \mathbb{R}^{m \times n}$ with $m>n$ efficient?

$$
\vec{x}=\rho_{\operatorname{top}}^{-1}\left(Q^{T} b\right)_{\text {top }}
$$

$\hat{\imath}$ still woks, even with economy

Economical/Reduced QR

Is $Q R$ with square Q for $A \in \mathbb{R}^{m \times n}$ with $m>n$ efficient?

No. Can obtain economical or reduced $Q R$ with $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$. Least squares solution process works unmodified with the economical form, though the equivalence proof relies on the 'full' form.

Constructing Reflections

Given a plane represented by its (unit) normal vector \boldsymbol{n}, construct a reflection about that plane.

$$
\| \vec{n} \mid+1
$$

Householder Transformations
Find an orthogonal matrix Q to zero out the lower part of a vector \boldsymbol{a}.
let $\vec{a}=$ first col of A
Want: refle cor H_{1} solhurt

H, \vec{a} Ore, $\vec{e}=\left(\begin{array}{l}x \\ 0 \\ \vdots \\ 0\end{array}\right)$

$\sim_{\text {First col of R }}$
cosh of $H_{x}^{\vec{x}}$?
$I_{2}: O_{n}$
$\left.2 \min ^{\top} x\right): O(n)$

Householder Reflectors: Properties

Seen from picture (and easy to see with algebra):

$$
H \mathbf{a}= \pm\|\boldsymbol{a}\|_{2} \boldsymbol{e}_{1} .
$$

Remarks:

- Q: What if we want to zero out only the $i+1$ th through nth entry? A: Use \boldsymbol{e}_{i} above.
- A product $H_{n} \cdots H_{1} A=R$ of Householders makes it easy (and quite efficient!) to build a QR factorization.
- It turns out $\left\|_{6} \stackrel{n}{=} \boldsymbol{a}+\right\| \boldsymbol{a} \|_{2} \boldsymbol{e}_{1}$ works out, too-just pick whichever one causes less cancellation.

$$
\vec{n}=\vec{a}-\left\|a_{2}\right\| \vec{e}_{1}
$$

- H is symmetric
- H is orthogonal

$$
j I^{\top} H \quad \cdots
$$

Demo: 3×3 Householder demo [cleared]

$$
\begin{aligned}
& \left(\begin{array}{cc}
4 & 0 \\
8 & \begin{array}{l}
x \\
x \\
0
\end{array} \\
\underset{1}{x} & x \\
x & f
\end{array}\right. \\
& \vec{a}=\left[\begin{array}{l}
0 \\
x \\
\otimes
\end{array}\right] \quad \vec{v}=\vec{a}-\left\|a_{1}\right\|_{e_{2}} 0\left(\begin{array}{c}
0 \\
x_{1}^{\prime} \\
x^{\prime}
\end{array}\right) \\
& n=I-\left(\frac{v v^{\top}}{v_{v}}\right)
\end{aligned}
$$

Givens Rotations

If reflections work, can we make rotations work, too?

$$
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\pm \sqrt{a_{1}^{2}+a_{2}^{2}} \\
0
\end{array}\right] \quad \begin{aligned}
& c=a_{1} /\|\vec{a}\|_{2} \\
& s=a_{2}\|\vec{a}\|_{l}
\end{aligned}
$$

Demo: 3×3 Givens demo [cleared]

$$
\begin{aligned}
& \underbrace{G_{3} C_{2} G_{1}}_{O^{+}}\left(\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right)=\left(\begin{array}{lll}
x & 0 & 0 \\
& 0 & 0 \\
& & 0
\end{array}\right) \\
& G_{1}=\left(\begin{array}{lll}
1 & & \\
& \left(\begin{array}{ll}
4 \\
-5,5 & 5
\end{array}\right)
\end{array}\right) \quad \text { Or } A=\Omega \\
& \sigma_{2}=\left(\begin{array}{cc}
c_{1} & s_{2} \\
-s_{2} & \\
-2 & 1 \\
1 & 1
\end{array}\right) \\
& \sigma_{3}=\left(\begin{array}{cc}
1 & 1 \\
& \left(\begin{array}{c}
3_{3} \\
-5 \\
-5,5
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

Rank-Deficient Matrices and QR
What happens with QR for rank-deficient matrices?
P

