Goals.

- (SQ: relax "tall ranle "assumption
- Mocir SUDs'. "
- Eigaralnes

Rank-Deficient Matrices and QR
What happens with $Q R$ for rank-deficient matrices?

- zeros on diag of R
- $\left.A P=Q R=Q\left(\begin{array}{c}\text { big smalla } \\ 0 \text { small } \\ 0!\end{array}\right)\right)$ rale
- column- plotted $Q R \quad\left({ }^{n}\left(P Q R^{n}\right)\right.$
- rank-resealing QR

Rank-Deficient Matrices and QR

What happens with QR for rank-deficient matrices?
$A=Q R$, where R has some snall diagonal entries, in undetermined order. zen
Practically, it makes sense to ask for all these 'small' columns to be gathered near the 'right' of $R \rightarrow$ Column pivoting.
Q: What does the resulting factorization look like?

$$
\begin{gathered}
A P=Q R \\
A P=Q\left[\begin{array}{ccc}
* & * & * \\
& (\text { small }) & (\text { small }) \\
& & (\text { smaller })
\end{array}\right]
\end{gathered}
$$

Also used as the basis for rank-revealing $Q R$.

Rank-Deficient Matrices and Least-Squares
What happens with Least Squares for rank-deficient matrices?

$$
A \boldsymbol{x} \cong \boldsymbol{b}
$$

There exists a hullspace, $\quad \operatorname{dim}(N(A))>0$.
Suppose \vec{x} minimizes $\|A x-b\|_{l}^{2}: \quad$ (et $\vec{n} \in N(A) \backslash\{\overrightarrow{0})$.
What about $\vec{x}+x \vec{n}!$

$$
A(\vec{x} \vec{x})=A_{\vec{x}} \Rightarrow \text { residual stays the sain! }
$$

- nod whigue ask for extra conditions.

$$
\|A x-b\|_{1} \rightarrow \min +\quad\|x\|_{2} \rightarrow \min
$$

SVD: Reduced and Full
economy
For a matrix of shape $m \times n$ with $m>n$, what are the shapes of the factors in the SVD?

SVD: Reduced and Full

For a matrix of shape $m \times n$ with $m>n$, what are the shapes of the factors in the SVD?

Again, there is the full version of the factorization:
$\rightarrow U: m \times m$

- $\Sigma: m \times n$
- V: $n \times n$
and the economical/reduced version:
- U: $m \times n$
- $\Sigma: n \times n$
- V: $n \times n$

SVD: What's this thing good for?
$\|A\|_{2}=\sigma$,
$\kappa_{c}(A)=\delta_{1} / \delta_{n}$
null space $(A)=\operatorname{spon}\left\{v_{i} ; \sigma_{i}=0\right\}$

$$
\begin{aligned}
& A=\square \nabla_{i} \square \\
& =0\}
\end{aligned}
$$

$\operatorname{rank}(A)=\#\left\{\sigma_{i} \neq 0\right\}$
? nol computable due to romalig errov

C for exmple: 2×2

num ranle $(A, \varepsilon)=\#\left\{\sigma_{i}>\varepsilon\right\}$
(A revicu:
v_{i} orthonomal basis

$$
\begin{gathered}
v_{i}^{\top} v_{j}= \begin{cases}0 & i \neq j \\
1 & i=j\end{cases} \\
\vec{x}=\sum \underbrace{\left(\vec{v}_{i}^{\top} \vec{x}\right)}_{\alpha_{i}} \vec{v}_{i} \\
V^{\top} \vec{x}=\vec{\alpha} \quad \underbrace{\ddots_{0}}_{0} \underbrace{V^{\top} \vec{x}}_{\vec{\alpha}}
\end{gathered}
$$

SVD: What's this thing good for? (II)

- Low-rank Approximation

Theorem (Eckart-Young-Mirsky)
If $k<r=\operatorname{rank}(A)$ and

$$
\begin{aligned}
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2} & =\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}, \\
\min _{\operatorname{rank}(B)=k}\|A-B\|_{F} & =\left\|A-A_{k}\right\|_{F}=\sqrt{\sum_{j=k+1}^{n} \sigma_{j}^{2}} .
\end{aligned}
$$

Demo: Image compression [cleared]

$$
u(x, y)+U_{0}(x) U_{1}(y)
$$

Sep, of variables
Use canned basis $\rightarrow \sin / \cos$?

SVD: What's this thing good for?
The minimum norm solution to $\boldsymbol{A x} \cong \boldsymbol{b}$:

Idea: Choose $y_{a+1} \ldots, y_{n}=0$
Then $\|\vec{y}\|$ is minimized among all passible chases tory.

$$
\begin{aligned}
& \vec{y}=V^{\top} \vec{x} \\
& \quad V \vec{y}=\vec{x} \Rightarrow\|\vec{x}\|_{2}=\|\vec{y}\|_{2} \\
& \\
& \Rightarrow\|\vec{x}\|_{2} \text { is also mivinited }
\end{aligned}
$$

SVD: Minimum-Norm, Pseudoinverse

$$
A=U \varepsilon V^{\top}
$$

What is the minimum 2 -norm solution to $A \boldsymbol{x} \cong \boldsymbol{b}$ and why?

$$
A^{-1}=U \Sigma^{-1} U^{\top}
$$

For diag t not full rank def. psendo in for not full rank.

To solve $A \vec{x}=\vec{B}$

$$
\vec{x}=A^{+} \vec{b}
$$

Generalize the pseudoinverse to the case of a rank-deficient matrix.
in full-rank case : coincidos with psendo inv from normal egms.

Comparing the Methods

Methods to solve least squares with A an $m \times n$ matrix:
\square
Demo: Relative cost of matrix factorizations [cleared]

Comparing the Methods

Methods to solve least squares with A an $m \times n$ matrix:

- Form: $A^{T} A: n^{2} m / 2$ (symmetric-only need to fill half) Solve with $A^{T} A$: $n^{3} / 6$ (Cholesky)
- Solve with Householder: $m n^{2}-n^{3} / 3$
- If $m \approx n$, about the same
- If $m \gg n$: Householder QR requires about twice as much work as normal equations
- SVD: $m n^{2}+n^{3}$ (with a large constant)

Demo: Relative cost of matrix factorizations [cleared]

In-Class Activity: Householder, Givens, SVD

In-class activity: Householder, Givens, SVD

