- Feedback
- Exam 2: starts next Friday
-Goals:
- eiyourvalues
- linaly revien, motivation
- sensitivity
- methods

Eigenvalue Problems: Setup/Math Recap

A is an $n \times n$ matrix. $\boldsymbol{x} \neq 0$ is called an eigenvector of A if there exists a λ so that

$$
A \dot{x}=\lambda x . \quad \Leftrightarrow \quad A(2 \vec{x})=\lambda(2 \vec{\lambda})
$$

- In that case, λ is called an eigenvalue.
- The set of all eigenvalues $\lambda(A)$ is called the spectrum.
- The spectral radius is the magnitude of the biggest eigenvalue:

$$
\rho(A)=\max \{|\lambda|: \lambda(A)\}
$$

$$
\begin{array}{cc}
F=m a & x(t) \tag{t}\\
& a(t)=\frac{\partial^{2} x(t)}{\partial t^{2}}
\end{array}
$$

Torce by Hooke's law

$$
\text { is } k\left(x_{1}-x_{7}\right)
$$

For many springs and many particlos,

$$
\begin{aligned}
& \text { THF } A \vec{x}(f) \\
& A x(d)=m \frac{\partial^{2} x(d)}{\partial E^{2}} \quad x(t)=\vec{x}_{0} \sin (\omega d) \\
& A \vec{x}_{0} \sin \left(w_{d}\right)=m \vec{x}_{c}\left(-w^{2}\right) \sin (\omega f) \\
& A \vec{x}_{j}=\left(-\omega^{2}\right) \vec{x}_{0}
\end{aligned}
$$

Finding Eigenvalues

How do you find eigenvalues?

$$
\begin{aligned}
& A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow(A-\lambda I) \boldsymbol{x}=0 \\
\Leftrightarrow & A-\lambda I \text { singular } \Leftrightarrow \operatorname{det}(A-\lambda I)=0
\end{aligned}
$$

$\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial, which has degree n, and therefore n (potentially complex) roots.

Does that help algorithmically? Abel-Ruffini theorem: for $n \geqslant 5$ is no general formula for roots of polynomial. IOW: no.

- For LU and QR, we obtain exact answers (except rounding).
- For eigenvalue problems: not possible—must iterate.

Demo: Rounding in characteristic polynomial using SymPy [cleared]

Multiplicity

$$
p=(\lambda-1)^{3}
$$

What is the multiplicity of an eigenvalue?
Actually, there are two notions called multiplicity:

- Algebraic Multiplicity: multiplicity of the root of the characteristic polynomial
- Geometric Multiplicity: \#of lin. indep. eigenvectors

In general: $A M \geqslant G M$.
If $A M>G M$, the matrix is called defective.

An Example

Diagonalizability
"Joudon blockn
"Jordon nomial form"
When is a matrix called diagonalizable? if not defechic

Similar Matrices

Related definition: Two matrices A and B are called similar if there exists an invertible matrix X so that $A=X B X^{-1}$.

In that sense: "Diagonalizable" $=$ "Similar to a diagonal matrix".
Observe: Similar A and B have same eigenvalues. (Why?)
Suppose $A_{t}=\lambda_{\vec{k}} \quad(\vec{t} \neq 0) . \quad B=x^{1} A x$
War: $\quad B \vec{y}=\lambda \vec{y}$? $\quad \vec{y}=$?

$$
\begin{aligned}
& \text { Attempt }: y_{y}=x_{x} \\
& B \vec{y}=x^{-1} A x x x_{z}^{2} \ldots ?
\end{aligned}
$$

Attempt 2:

$$
\begin{aligned}
& \vec{y}=x^{-1} x \\
& B_{y}=x^{-1} A \underbrace{x x^{-1}}_{I} \vec{x}=x^{-1} A x+x^{-1} \lambda z \\
&=\lambda \vec{y} 131
\end{aligned}
$$

Eigenvalue Transformations (I)
What do the following transformations of the eigenvalue problem $\overparen{A x}=\lambda \boldsymbol{x}$ do?
Shift. $A \rightarrow A-\sigma I=B$

$$
B \vec{x}=(A-\sigma \bar{\downarrow}) \vec{a}-\lambda \vec{t}-\sigma x=(\lambda-\sigma) \vec{x}
$$

Inversion. $A \rightarrow A^{-1}=B$

$$
A \vec{x}=\lambda \vec{x} \quad \left\lvert\, A^{-1} \Leftrightarrow \frac{\vec{x}}{\lambda}=A^{-1} \vec{x}\right.
$$

$$
B \vec{x}=A^{-1} \vec{x}=\frac{1}{\lambda} \vec{x}
$$

Power. $A \rightarrow A^{k}$

$$
A^{3} \dot{x}=A A(\lambda A)=\lambda^{3} \dot{x} \quad A^{k} x=\lambda^{k} x_{x}^{3}
$$

Eigenvalue Transformations (II)

Polynomial $A \rightarrow a A^{2}+b A+c l=\Omega$

$$
B \vec{x}=a A^{2} \vec{x}+b A \vec{x}+c \vec{x}-\left(a \lambda^{2}+b \lambda+c\right) \vec{x}
$$

$$
\begin{aligned}
& \text { Similarity } T^{-1} A T \text { with } T \text { invertible } \quad A_{x} \overrightarrow{=}=\lambda \vec{x} \\
& B \vec{y}=\lambda \vec{y} . \quad \vec{y}=T^{-1} \vec{x}
\end{aligned}
$$

Sensitivity (I)
Assume A not defective. Suppose $X^{-1} \overline{A X=D}$. Perturb $A \rightarrow A+E$. What happens to the eigenvalues?

$$
x^{1}(A+E) x=D+F
$$

Want to understand eigan values of $A+E$. $A+E$ similar to Dr F \Rightarrow some eignualues. Idea: under stand eigenvalues of $D+F$.
Suppose:

$$
\begin{array}{ll}
(D+F) \vec{v}=\mu \vec{v} \quad & (\vec{v} \neq \overrightarrow{0}) \\
F \vec{v}=(\mu I-D) \vec{v} & \mid(\mu I-D)^{-1}
\end{array}
$$

Assume $\mu \notin \sigma(A)$. Then $(\mu I \cdot D)$ is invertible.

$$
\begin{aligned}
& \left(\mu I-D I^{-1}\right)+v=\vec{v} \\
\Rightarrow & \left\lvert\, \vec{s}\|\leq\|(\mu \mid-D)^{-1}\| \| F\| \|<\left\|\quad \frac{1}{\|(\mu t-D)^{-V^{2}}} \leq\right\| t\right. \|
\end{aligned}
$$

Sensitivity (II) \quad subtract off $x^{-1} A \nmid=0$
$\quad X^{-1}(A+E) X=D+F$. Have $\left.\|(\mu I-D)^{-1}\right)^{-1} \leq\|F\|$.
Demo: Bauer-Fike Eigenvalue Sensitivity Bound [cleared]

$$
\begin{aligned}
& \text { Coom danio: } \frac{1}{\left\|(\mu I-D)^{-1}\right\|}=\left|\mu-\lambda_{k}\right| \text { where } \lambda_{k} \text { is serval } \quad \begin{array}{l}
\text { of } A \text { closest to } \mu .
\end{array} \\
& x^{-1} E x=\mp \\
& \left|\mu-\lambda_{a}\right| \leq\|F\|=\left\|x^{1} E X\right\| \in \operatorname{cond}(x)\|E\|
\end{aligned}
$$

Power Iteration

Demo: Motivating Power Iteration [cleared]
Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|$ with eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$.
Further assume $\left\|\boldsymbol{x}_{i}\right\|=1$.

