- Droppin letom, 1 bw, Zquizzes
- Exam 2 ready to schedule (online tin persa)
- HW8: short
- Recitation sechon: Mondays (e 2:30 in

Loomis 151 G. 3:30
GBYOP \& replaces 1 office howr
G see class calendar

- HW poll

Gouls.

- methods to compurte one eíyenvector \rightarrow "power method" / "power iberation" $A^{1,000} x_{0}$
- Eijaralucs
- orteogonal iteration \rightarrow QR iteration
- Schur form / Schur factionzation
$A=X^{-1} D X$

$$
A^{3}=X^{-1} D X X^{-1} D X X^{-1} D X=X^{-1} D^{3} X
$$

$$
y=\left(\begin{array}{c}
A(A(A(A(A x))) \\
\binom{1}{)}
\end{array}\right.
$$

Power Iteration
Demo: Motivating Power Iteration [cleared]
Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}>\cdot>\left|\lambda_{n}\right|\right.$ with eigenvectors x_{1}, \ldots, x_{n}.
Further assume $\left\|\boldsymbol{x}_{i}\right\|=1$.

$$
A \alpha \vec{x}=\lambda_{\alpha \vec{x}}
$$

$\vec{x}_{0}=$ "something random"

$$
\vec{x}_{i}=A \vec{x}_{i-1} /\left\|A \vec{x}_{i-1}\right\| \quad(i=1,2,3, \ldots,)
$$

Assur $\vec{x}_{0}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}+\cdots$

$$
\begin{gathered}
\vec{y}=A^{1000} \vec{x}_{0}=A^{1000}\left(\alpha \vec{v}_{1}+\beta \vec{v}_{2}\right)=\alpha \lambda_{1}^{1000} \vec{v}_{1}+\left.\beta \lambda_{2}^{100 v_{2}}\right|^{A} \\
\frac{y}{\lambda_{1}^{1000}}=\alpha \quad \stackrel{\rightharpoonup}{v_{1}+\beta} \frac{\lambda_{2}^{1000}}{\lambda_{1}^{1000}} \vec{v}_{2}=\alpha \vec{v}_{1}+\beta\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1000} \overrightarrow{v_{2}} \\
\vec{e}_{i}=\vec{x}_{i}-\vec{v}_{1}
\end{gathered}
$$

Power Iteration: Issues?

What could go wrong with Power Iteration?

- What if $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$?
\rightarrow multiplicity
\rightarrow allowe a to be complex! Point C
- What about complex eigurvanos?

- $\stackrel{\rightharpoonup}{x}_{0}$ does not contain a com onat in \vec{v}_{1} rounding error will give you one, with tine.

Elyevales of A

Eigualues of A.\%I

.Eigu valuer of $(A-O T)^{-1}$

What about Eigenvalues?

Power Iteration generates eigenvectors. What if we would like to know eigenvalues?

$$
\frac{x^{\top} A_{x}}{x^{\top} x}=\lambda
$$

"Rayleigh quotients
\rightarrow Rayleigh quotient Iteration

Convergence of Power Iteration

What can you say about the convergence of the power method?
Say $\boldsymbol{v}_{1}^{(k)}$ is the k th estimate of the eigenvector \boldsymbol{x}_{1}, and

$$
e_{k}=\left\|x_{1}-v_{1}^{(k)}\right\| .
$$

