- Exam 2
- Vole or Lw poll
- Follow - ups
- complex stantín veer on real valued matrix

$$
|a+i b|=|a-i b|
$$

$$
-\vec{x}_{j} \quad A \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \quad v=\left(\vec{v}_{1} \cdots \vec{v}_{n}\right)
$$

$$
\text { gym. }\left\{\begin{array}{lll}
=\nabla R O(\underset{a}{*} 0 & \left\|\vec{x}-\vec{v}_{i}\right\|=h \Rightarrow\left|R Q(x)-\lambda_{i}\right|=O\left(h^{2}\right) \\
-\nabla R Q(x)=0 & \begin{array}{l}
x \text { is eigvect } \\
(h \rightarrow 0) \\
\lambda_{\text {min }} \rightarrow \text { min } \\
\lambda_{\text {max }} \rightarrow \text { max }
\end{array}
\end{array}\right.
$$

Goab:

- Sctiur form
- mehods?
- deflation
- ooth. it.
- QR it.
- Krylar

$$
A=X D X^{-1} \xrightarrow{>} x^{-1} \text { bad if poesn't alangs exist condition }
$$

Schur form
Show: Every matrix is orthonormally similar to an upper triangular matrix, ie. $A=Q U Q_{-}^{T}$. This is called the Schur form or Schur factorization.

$$
\left.\begin{array}{rl}
O N B & \vec{v} \vec{v}_{2} \ldots \vec{v}_{n} \\
\vec{x} & =\alpha \vec{v}+\vec{\alpha}_{2} v_{2}+\ldots+\alpha_{n} \vec{v}_{n} \\
\vec{\alpha} & =\left(\begin{array}{l}
\alpha \\
\alpha_{2} \\
\alpha_{1}
\end{array}\right)=V^{-1} \vec{x}=V^{\top} \vec{x} \\
V & =\left(\vec{u} \vec{v}_{2} \cdots \vec{v}_{n}\right.
\end{array}\right)
$$

Do hav recursisely, on A_{2}

$$
A_{2}=a_{2} \prod^{\frac{1}{2}}
$$

until

$$
A=Q \longleftarrow Q^{T} \longleftarrow \text { scher fom. }
$$

Schur Form: Comments, Eigenvalues, Eigenvectors
$\left\{A=Q U Q^{T}\right.$. For complex λ :
FYF - Either complex matrices, or
2×2 blocks on diag. \rightarrow with realcvalued Schur for If we had a Schur form of A (no 2×2 blocks), can we find the eigenvalues?
diag. of 7
And the eigenvectors?

$$
\begin{aligned}
& \left(\begin{array}{c}
u^{\prime \prime}-1 \\
-1 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{ccc}
u_{11} & \vec{u} & u_{3} \\
& 0 & \vec{u} \cdot \vec{T} \\
& & u_{3}
\end{array}\right)\left(\begin{array}{ll}
u_{11} & u_{11}^{-} \vec{u}-\vec{n} \\
0 & \vec{n}=\overrightarrow{0} \\
\overrightarrow{0}
\end{array}\right) \\
& u_{x}=\lambda^{2} \quad A=Q u Q^{+} \\
& \vec{y}=Q_{x} \\
& A_{\vec{y}}=Q U Q^{\top} \vec{y}=\lambda_{\vec{y}}
\end{aligned}
$$

computable at $\mathrm{OH}^{\top}\left(\begin{array}{l}\text { a }\end{array}\right)(\mathrm{OS})$ via bark sub

Schur Form: Comments, Eigenvalues, Eigenvectors

$A=Q U Q^{T}$. For complex λ :

- Either complex matrices, or
- 2×2 blocks on diag.

If we had a Schur form of A (no 2×2 blocks), can we find the eigenvalues?
\square
And the eigenvectors?

Computing Multiple Eigenvalues

All Power Iteration Methods compute one eigenvalue at a time.
What if I want all eigenvalues?

- Follow argument for surv for Fid d SF by reducing the problem size one vector atatime. depletion"
- Power iteration w/ multiple vectors

Simultaneous Iteration

What happens if we carry out power iteration on multiple vectors simultaneously?

$$
\begin{aligned}
& X_{0}=\text { somethis random } \\
& X_{i+i}=A X_{i}
\end{aligned}
$$

had. - all cotumus cow. to leader

- unnomaliced

Orthogonal Iteration

$$
\begin{aligned}
& x_{0}=\text { somthy randon } \\
& \tilde{X}_{i+1}=A x_{i} \\
& O_{0} n_{0}=\tilde{X}_{i+1} \\
& x_{1}=Q_{0}
\end{aligned}
$$

Toward the QR Algorithm

$$
\begin{aligned}
Q_{0} R_{0} & =x_{0} \\
X_{1} & =A Q_{0} \\
Q_{1} \Omega_{1} & =x_{1}=A Q_{0} \Rightarrow \quad Q_{1} \Omega_{1} \bigcap_{0}^{\top}=A \\
X_{2} & =A Q_{1} \\
Q_{2} R_{2} & =x_{2}
\end{aligned}
$$

If Q_{u} converge, ...sothat $Q_{k} \approx Q_{k+1} ; R_{k} \approx Q_{k}^{\top} A Q_{k}=\hat{=}$ check \hat{X}_{k} for "upper -triagulaw-ness", to see if we 've

QR Iteration/QR Algorithm

Proof sketch: Equivalencé of QR iteration/Orth. iteration

Orthogonal Iteration (no bars)

- $X_{0}:=A$
- $Q_{0} R_{0}:=X_{0}$,
- where we may choose
$Q_{0}=\bar{Q}_{0}$
- $\hat{X}_{0}=Q_{0}^{H} A Q_{0}=$
$Q_{0}^{H} Q_{0} R_{0} Q_{0}=R_{0} Q_{0}$
- $X_{1}:=A Q_{0}$
- $Q_{1} R_{1}:=X_{1}$, and because of

$$
X_{1} \equiv Q_{0} Q_{0}^{H} A Q_{0}=Q_{0} \bar{X}_{1}=
$$ $Q_{0} \bar{Q}_{1} \bar{R}_{1}$

we may choose $Q_{1}=Q_{0} \bar{Q}_{1}=\bar{Q}_{0} \bar{Q}_{1}$.

QR Iteration (with bars)

- $\bar{X}_{0}:=A$
- $\bar{Q}_{0} \bar{R}_{0}:=A$
- $\bar{X}_{1}:=\bar{R}_{0} \bar{Q}_{0}=\hat{X}_{0}$
- $\bar{Q}_{1} \bar{R}_{1}:=\bar{X}_{1}$
- $\bar{X}_{2}:=\bar{R}_{1} \bar{Q}_{1}$
- $\bar{X}_{2}=Q_{1}^{H} A Q_{1}=\hat{X}_{1}$
-

$A=Q \ Q^{\top}$

