- Ak office hours conkedled Than
- Exam grades $2 \rightarrow$ wed
- Exam 1 grades / 18 not $/ 20$

QR Iteration/QR Algorithm

Sequivalint to orth liter

$$
\left(\begin{array}{c}
A^{2}=\bar{\theta}_{0} \bar{V}_{1}, \bar{r}_{0} \\
\vdots \\
A^{k}=\cdots
\end{array}\right.
$$

$$
\dot{x}_{k 1}=\bar{Q}_{k}^{H} \bar{Q}_{k-1}^{H H} \quad \bar{Q}_{0}^{H} A \underbrace{\bar{Q}_{0} \cdots \bar{Q}_{k}}_{Q_{a l l}^{H}}
$$

$Q \in 11^{n \times n}$

Proof sketch: Equivalence of QR iteration/Orth. iteration

Orthogonal Iteration (no bars)

- $X_{0}:=A$
- $Q_{0} R_{0}:=X_{0}$,
- where we may choose $Q_{0}=\bar{Q}_{0}$
- $\hat{X}_{0}=Q_{0}^{H} A Q_{0}=$
$Q_{0}^{H} Q_{0} R_{0} Q_{0}=R_{0} Q_{0}$
- $X_{1}:=A Q_{0}$
- $Q_{1} R_{1}:=X_{1}$, and because of
$X_{1}=Q_{0} Q_{0}^{H} A Q_{0}=Q_{0} \bar{X}_{1}=$ $Q_{0} \bar{Q}_{1} \bar{R}_{1}$
we may choose

$$
Q_{1}=Q_{0} \bar{Q}_{1}=\bar{Q}_{0} \bar{Q}_{1} .
$$

QR Iteration (with bars)

- $\bar{X}_{0}:=A$
- $\bar{Q}_{0} \bar{R}_{0}:=A$
- $\bar{X}_{1}:=\bar{R}_{0} \bar{Q}_{0}=\hat{X}_{0}$
- $\bar{Q}_{1} \bar{R}_{1}:=\bar{X}_{1}$
- $\bar{X}_{2}:=\bar{R}_{1} \bar{Q}_{1}$
- $\bar{X}_{2}=Q_{1}^{H} A Q_{1}=\hat{X}_{1}$
-

Demo: QR Iteration [cleared]

QR Iteration: Forward and Inverse
QR iteration may be viewed as performing inverse iteration. How?

$$
\begin{aligned}
& \bar{x}_{0}=A \\
& \bar{Q}_{a} \bar{n}_{k}=\bar{X}_{u} \\
& \bar{X}_{n+1}=\bar{n}_{n} \bar{Q}_{n} \\
& X_{0}^{-H}+A^{-H} \quad \text { lower trimingow }
\end{aligned}
$$

QR Iteration: Incorporating a Shift

How can we accelerate convergence of QR iteration using shifts?

$$
\begin{aligned}
& \bar{\sigma}_{u} \bar{R}_{n}=\bar{X}_{a}-\sigma_{n} I \quad \Leftrightarrow \bar{R}_{k}=\bar{Q}_{k}^{H} \bar{X}_{u}-\bar{Q}_{k}^{H} \sigma I \\
& \bar{X}_{n+1}=\bar{R}_{k} Q_{k}+\sigma_{k} I \\
& \bar{X}_{n+1}=\bar{R}_{k} \bar{Q}_{k}+\sigma_{k} I=\left(\bar{Q}_{k}^{H} \bar{X}_{k}-\bar{Q}_{k}^{H} \sigma I\right) \bar{Q}_{u}+\sigma I \\
& =\bar{Q}_{n}^{H} \bar{x}_{n} \partial_{\bar{k}}^{H} \cdot \underbrace{Q_{n}^{H} Q_{v}}+I_{\sigma} \\
& =Q_{u}^{H} \bar{x}_{u} O_{n}{ }^{r}
\end{aligned}
$$

Demo: QR Iteration [cleared] (Shifted)

QR Iteration: Computational Expense
A full QR factorization at each iteration costs $O\left(n^{3}\right)$-can we make that cheaper?

stow QR with H
 \rightarrow ? is this shape Maintained?

QR/Hessenberg: Overall procedure

Overall procedure:

1. Reduce matrix to Hessenberg form
2. Apply $Q R$ iteration using Givens $Q R$ to obtain Schur form

Why does QR iteration stay in Hessenberg form?

What does this process look like for symmetric matrices?

Krylov space methods: Intro
What subspaces can we use to look for eigenvectors?
QR/ orth liter:

$$
\vdots \operatorname{spon}\left(\begin{array}{lll}
A^{l} \vec{y}_{1} & \ldots & A^{l} \vec{y}_{k}
\end{array}\right)
$$

Kurgor space

$$
k_{k}\left(\begin{array}{ccc}
1 & 1 \\
x_{0} & \cdots & x_{k-1} \\
1 & 1
\end{array}\right) \in n \times k
$$

Krylov for Matrix Factorization
What matrix factorization is obtained through Krylov space methods?

Conditioning in Krylov Space Methods/Arnoldi Iteration (I) What is a problem with Krylov space methods? How can we fix it?

$$
\begin{aligned}
Q_{n} \cdot R_{n}=K_{n} & \Leftrightarrow Q_{n}=k_{n} R_{n}^{-1} \\
Q_{n}^{\top} A Q_{n} & =\underbrace{R_{n} K_{n}^{-1} A K_{n} R_{n}^{-1}}_{n} \\
& =\square=H_{n}
\end{aligned}
$$

Conditioning in Krylov Space Methods/Arnoldi Iteration (II)

Demo: Arnold Iteration [cleared] (Part 1)

Krylov: What about eigenvalues?

How can we use Arnoldi/Lanczos to compute eigenvalues?

Demo: Arnoldi Iteration [cleared] (Part 2)

