

Improving on Newton?

How would we do "Newton + 1" (i.e. even faster, even better)?

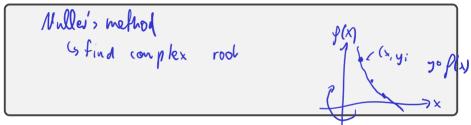
Improving on Newton?

How would we do "Newton + 1" (i.e. even faster, even better)?

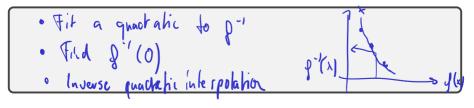
- Easy:
 - Use second order Taylor approximation, solve resulting quadratic
 - Get cubic convergence!
 - Get a method that's extremely fast and extremely brittle
 - Need second derivatives
 - What if the quadratic has no solution?

Root Finding with Interpolants

Secant method uses a linear interpolant based on points $f(x_k)$, $f(x_{k-1})$, could use more points and higher-order interpolant:



What about existence of roots in that case?

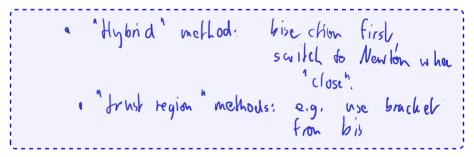


Finding all roots?

Pu poly of degree a $p_{n-1}(x) = \frac{p_n(x)}{(x-x^2)}$ $x^*: app roximate root$ " Netlation"

Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally. How could we use that?



Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally. How could we use that?

Hybrid methods: bisection + Newton

- Stop if Newton leaves bracket
- Fix a region where they're 'trustworthy' (trust region methods)
- Limit step size
- Sufficient conditions for convergence of Newton (under strong assumptions) are available.

Fixed Point

For

50

ed Point Iteration

$$\begin{array}{rcl}
&\overbrace{g(x+i)} = &\overbrace{g(x)} + &\overbrace{g(x)} + &O(l) \\
& x_{0} &= &\langle \text{starting guess} \rangle \\
& x_{k+1} &= &\overbrace{g(x_{k})} & e_{hij} \times_{kij} - & x^{i} = & g(x_{k}) - g(x^{i}) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
\end{array}$$
When does this converge?

$$\begin{array}{rcl}
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{k} - x^{i}) + &O([x_{k} - x^{i}]) \\
& & g'(x^{i})(x_{$$

A sharper chlorion : g(A) < 1.

184

Newton's Method

What does Newton's method look like in n dimensions?

$$\widehat{p}(\widehat{x} + \widehat{s}) \approx \widehat{p}(\widehat{x}) + \widehat{p}(\widehat{x})\widehat{s} = 0$$

$$\int_{e}^{e} (\widehat{x}) \widehat{s} = -\widehat{p}(k)$$

$$\widehat{x}_{k+1} = \widehat{x}_{k} - \widehat{p}(\widehat{x}_{k})^{-1}\widehat{p}(\widehat{k})$$

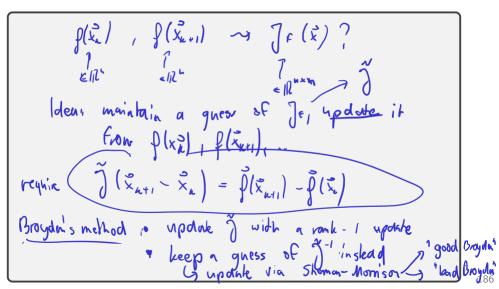
$$\widehat{s} = -\widehat{p}_{k}^{-1}(\widehat{x})\widehat{p}(\widehat{k})$$

Downsides of *n*-dim. Newton?

Demo: Newton's method in n dimensions [cleared]

Secant in *n* dimensions?

What would the secant method look like in n dimensions?



Numerically Testing Derivatives

Getting derivatives right is important. How can I test/debug them?

Pick hoo,
$$\vec{s} \in \mathbb{N}^{L}$$
 with $\|\vec{s}\|_{z} = 1$.

$$\left\| \begin{array}{c} \frac{p(x+h\vec{s}) - p(\vec{x})}{h} - \int_{e} (\vec{x}) \quad \vec{s} \right\| = O(h) \\ (h \to 0) \\ (h$$

1/2 - class; non Dinen

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Introduction Methods for unconstrained opt. in one dimension Methods for unconstrained opt. in *n* dimensions Nonlinear Least Squares Constrained Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Optimization: Problem Statement

Have: Objective function $f : \mathbb{R}^n \to \mathbb{R}$ *Want:* Minimizer $\mathbf{x}^* \in \mathbb{R}^n$ so that

$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{g}(\mathbf{x}) = 0$ and $\mathbf{h}(\mathbf{x}) \le 0$.

▶
$$g(x) = 0$$
 and $h(x) \le 0$ are called constraints.
They define the set of feasible points $x \in S \subseteq \mathbb{R}^{n}$

- If g or h are present, this is constrained optimization.
 Otherwise unconstrained optimization.
- If *f*, *g*, *h* are *linear*, this is called linear programming.
 Otherwise nonlinear programming.

not have

Optimization: Observations

Q: What if we are looking for a *maximizer* not a minimizer? $\sim f$ Give some examples:

What about multiple objectives?

Existence/Uniqueness

Terminology: global minimum / local minimum

Under what conditions on f can we say something about existence/uniqueness?

If $f:S \to \mathbb{R}$ is continuous on a closed and bounded set $S \subseteq \mathbb{R}^n$, then

 $f: S \to \mathbb{R}$ is called *coercive* on $S \subseteq \mathbb{R}^n$ if

If f is coercive and continuous and S is closed, ...