


Existence/Uniqueness
Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f : S → R is continuous on a closed and bounded set S ⊆ Rn, then

f : S → R is called coercive on S ⊆ Rn if

If f is coercive and continuous and S is closed, . . .
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Convexity

S ⊆ Rn is called convex if for all x , y ∈ S and all 0 ≤ α ≤ 1

f : S → R is called convex on S ⊆ Rn if for x , y ∈ S and all 0 ≤ α ≤ 1

Q: Give an example of a convex, but not strictly convex function.
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Convexity: Consequences

If f is convex, . . .

If f is strictly convex, . . .
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Optimality Conditions
If we have found a candidate x∗ for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.
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Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

Q: Is the Hessian symmetric?

Q: How can we practically test for positive definiteness?
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Sensitivity and Conditioning (1D)
How does optimization react to a slight perturbation of the minimum?
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Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?
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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.
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Golden Section Search
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.
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Golden Section Search: Efficiency
Where to put x1, x2?

Convergence rate?
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Newton’s Method
Reuse the Taylor approximation idea, but for optimization.

Demo: Newton’s Method in 1D [cleared]
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