

4ch1 → Wod exan J → contout cutoff tody → still dropping lowest score

Existence/Uniqueness

Terminology: global minimum / local minimum

Under what conditions on f can we say something about existence/uniqueness?

If $f: \mathcal{S}
ightarrow \mathbb{R}$ is continuous on a closed and bounded set $\mathcal{S} \subseteq \mathbb{R}^n$, then

a min exists

$$f: \mathcal{S}
ightarrow \mathbb{R}$$
 is called *coercive* on $\mathcal{S} \subseteq \mathbb{R}^n$ if

$$l_{x_1} \rightarrow \omega$$
 $l(x) \rightarrow \infty$

If f is coercive and continuous and S is closed, ...

Convexity

$$S \subseteq \mathbb{R}^{n}$$
 is called convex if for all $\mathbf{x}, \mathbf{y} \in S$ and all $0 \le \alpha \le 1$
 $\mathbf{x} \stackrel{\mathbf{x}}{\times} + (1 - \alpha) \stackrel{\mathbf{y}}{\mathbf{y}}$ convex combinations s^h
 $f: S \to \mathbb{R}$ is called convex on $S \subseteq \mathbb{R}^{n}$ if for $\mathbf{x}, \mathbf{y} \in S$ and all $0 \le \alpha \le 1$
 $\mathbf{y}(\mathbf{x} \stackrel{\mathbf{x}}{\times} + (1 - \alpha) \stackrel{\mathbf{y}}{\mathbf{y}}) \le \mathbf{x} \stackrel{\mathbf{y}(\mathbf{x})}{\mathbf{x}} + (1 - \alpha) \stackrel{\mathbf{y}(\mathbf{y})}{\mathbf{y}}$
 $c \in "strict$
Q: Give an example of a convex, but not strictly convex function.

Optimality Conditions

If we have found a candidate x^* for a minimum, how do we know it actually is one? Assume f is smooth, i.e. has all needed derivatives.

×44×

Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

Q: Is the Hessian symmetric?

Q: How can we practically test for positive definiteness?

Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?

$$Swppse |\{f(x) - p(x)\}| < tol \qquad x = x + L$$

$$Sp[x^{*}th] = p[x^{*}) + j'(x^{*}) h + j''(x^{*}) \frac{h^{7}}{2} + O(L^{3})$$

$$tol > |p(x^{*}th] - p(x^{*})| = |p^{*}(x^{*}) \frac{h^{7}}{2}|$$

$$h = |x - x^{*}| \le \sqrt{2tol}$$

Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?

Unimodality

Would like a method like bisection, but for optimization. In general: No invariant that can be preserved. Need *extra assumption*.

$$\begin{array}{l} \times_{2} < \times^{*} \Rightarrow f(x_{1}) > f(x_{c}) \\ \times^{*} < \times_{1} \Rightarrow f(x_{1}) < f(x_{d}) \end{array}$$

Golden Section Search

Suppose we have an interval with *f* unimodal:

Would like to maintain unimodality.

$$f(x_1) > f(x_2) \Rightarrow reduce to (x_1, 6)$$

 $f(x_1) < f(x_1) \Rightarrow reduce to (a_1, x_2)$

Golden Section Search: Efficiency

Where to put x_1 , x_2 ?

Convergence rate?

linen

Newton's Method

Reuse the Taylor approximation idea, but for optimization.

Demo: Newton's Method in 1D [cleared]