Announcements

Uchl $\rightarrow$ Wed
exam 3
$\rightarrow$ content cutoff tody
$\rightarrow$ still dropping lowest score

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Is contincions L) smooth

Goals

- Existence, uniqueness
- Sensibility
- methods $\mid D \rightarrow n D$


## Existence/Uniqueness

Terminology: global minimum / local minimum
Under what conditions on $f$ can we say something about
 existence/uniqueness?
If $f: S \rightarrow \mathbb{R}$ is continuous on a closed and bounded set $S \subseteq \mathbb{R}^{n}$, then


$$
\lim _{\eta_{x} \| \rightarrow \infty} f(x)=\infty
$$

If $f$ is coercive and continuous and $S$ is closed, $\ldots$
a global mil exists.

$S \subseteq \mathbb{R}^{n}$ is called convex if for al $\boldsymbol{x}, \boldsymbol{y} \in S$ and all $0 \leq \alpha \leq 1$

$$
\alpha \vec{x}+(1-\alpha) \vec{y} \quad \text { "convex combinatio.s.s }
$$

$f: S \rightarrow \mathbb{R}$ is called convex on $S \subseteq \mathbb{R}^{n}$ if for $\boldsymbol{x}, \boldsymbol{y} \in S$ and all $0 \leq \alpha \leq 1$


Convexity: Consequences

If $f$ is convex, .


- $f$ is continua as
- $x^{*} i_{s}$ local min $\Rightarrow x^{*}$ is global mic

If $f$ is strictly convex, ...


- $x^{*}$ is a local min $\Rightarrow x^{*}$ a unique global

Optimality Conditions

$$
x^{\top} A x
$$

If we have found a candidate $\boldsymbol{x}^{*}$ for a minimum, how do we know it actually is one? Assume $f$ is smooth, ie. has all needed derivatives.

- 10 :
necessary: $f^{\prime}\left(x^{x}\right)=0$

- nD:
 sufficient!


$$
f(\vec{x}+h \vec{s})=f(\vec{x})+\underset{=0}{\nabla f(x)} \cdot(h \vec{s})+\frac{h^{2}}{2}
$$

## Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

$$
\text { Solve } \nabla f=0
$$

Q: Is the Hessian symmetric?
yes, Sh wart's theorem

Q: How can we practically test for positive definiteness?

## Choloshy

Sensitivity and Conditioning (1D)
How does optimization react to a slight perturbation of the minimum?


Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?

$$
f(\vec{x}+h \vec{s})=f(\vec{x})
$$

$$
+\frac{h^{2}}{2} \quad \vec{s}^{\sigma} H_{f}(x) \stackrel{\rightharpoonup}{s}+O\left(h^{3}\right)
$$

$$
\left|h^{2}\right| \leqslant \frac{2 \operatorname{tol}}{\lambda_{\min }\left(H_{f}\left(x^{2}\right)\right)}
$$

sensitivity in nD setting depends on conditioning of th

Unimodality

Would like a method like bisection, but for optimization. In general: No invariant that can be preserved. Need extra assumption.

$f$ is called unimodal on a open internal. if there exits on $x^{*}$ such that for all $x_{1}<x_{2}$ in the internal

$$
\begin{aligned}
& x_{2}<x^{*} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right) \\
& x^{*}<x_{1} \Rightarrow f\left(x_{1}\right)<f\left(x_{1}\right)
\end{aligned}
$$

Golden Section Search
Suppose we have an interval with $f$ unimodal:


Would like to maintain unimodality.

$$
\begin{aligned}
& f\left(x_{1}\right)>f\left(x_{2}\right) \Rightarrow \text { reduce to }\left[x_{1}, b\right] \\
& f\left(x_{1}\right)<f\left(x_{2}\right) \Rightarrow \text { reduce to }\left[a, x_{2}\right]
\end{aligned}
$$

Golden Section Search: Efficiency
Where to put $x_{1}, x_{2}$ ?
Symenehy:


Convergence rate?
linen

## Newton's Method

Reuse the Taylor approximation idea, but for optimization.


Demo: Newton's Method in 1D [cleared]

