$$
\begin{aligned}
& \text { Exam } 3 \text { wext weeh } \\
& \text { HW12 } \\
& 4 \text { ch } 1 \rightarrow(\text { hopfunlly }) \text { tody }
\end{aligned}
$$

Goals.
10 opt methods
nO opt methods
\sim nohlinear lsq.

Newton's Method
Reuse the Taylor approximation idea, but for optimization.

$$
\left.\begin{gathered}
x=x_{k} \leadsto f(x+h) \approx f(\lambda)+f^{\prime}(x) h+f^{\prime \prime}(x) \frac{h^{2}}{2}=i \hat{\rho}(h) \\
0 \div \hat{f}^{\prime}(h)=f^{\prime}(x)+\rho^{\prime \prime}(x) h
\end{gathered}>h=-\frac{f^{\prime}(x)}{\rho^{\prime \prime}(x)} \right\rvert\,
$$

\rightarrow locally quads. cons. because equir. to solve-y Nestor
Demo: Newton's Method in 1D [cleared]

Steepest Descent/Gradient Descent
Given a scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point \boldsymbol{x}, which way is down?
Direction of steepest desc. - DI

$$
\begin{aligned}
& \vec{x}_{n+1} \vec{x}_{k}+{ }_{\eta} s_{k} \\
& s_{u}=-\nabla f\left(x_{u}\right) \\
& \alpha \leftrightarrow f\left(x_{k}+\alpha s_{k}\right) \in \text { min. That }_{\text {"line search }}
\end{aligned}
$$

Empincally: lined conv.

Steepest Descent: Convergence
Consider quadratic model problem:

$$
f(x)=\frac{1}{2} x^{T} A x+c^{T} x
$$

where A is SPD. (A good model of f near a minimum.)

$$
e_{n+1}=\left\|x_{n+i} x^{x}\right\|=\longleftrightarrow e_{k}
$$

Steepest Descent: Convergence

Consider quadratic model problem:

$$
f(x)=\frac{1}{2} x^{T} A x+c^{T} x
$$

where A is SPD. (A good model of f near a minimum.)

Define error $\boldsymbol{e}_{k}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}$. Then can show:

$$
\left\|\boldsymbol{e}_{k+1}\right\|_{A}=\sqrt{\boldsymbol{e}_{k+1}^{T} A \boldsymbol{e}_{k+1}}=\frac{\sigma_{\max }(A)-\sigma_{\min }(A)}{\sigma_{\max }(A)+\sigma_{\min }(A)}\left\|\boldsymbol{e}_{k}\right\|_{A}
$$

\rightarrow confirms linear convergence.
Convergence constant related to conditioning:

$$
\frac{\sigma_{\max }(A)-\sigma_{\min }(A)}{\sigma_{\max }(A)+\sigma_{\min }(A)}=\frac{\kappa(A)-1}{\kappa(A)+1} .
$$

Hacking Steepest Descent for Better Convergence

Extrapolation methods:

Heavy ball method:

Demo: Steepest Descent [cleared] (Part 2)

Hacking Steepest Descent for Better Convergence

Extrapolation methods:

Look back a step, maintain 'momentum'.

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)
$$

Heavy ball method:
constant $\alpha_{k}=\alpha$ and $\beta_{k}=\beta$. Gives:

$$
\left\|\boldsymbol{e}_{k+1}\right\|_{A}=\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\left\|\boldsymbol{e}_{k}\right\|_{A}
$$

Demo: Steepest Descent [cleared] (Part 2)

Optimization in Machine Learning

 What is stochastic gradient descent (SGD)?

Optimization in Machine Learning

What is stochastic gradient descent (SGD)?

Common in ML: Objective functions of the form

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x),
$$

where each f_{i} comes from an observation ("data point") in a (training) data set. Then "batch" (i.e. normal) gradient descent is

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(\boldsymbol{x}_{k}\right)
$$

Stochastic GD uses one (or few, "minibatch") observation at a time:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha \nabla f_{\phi(k)}\left(\boldsymbol{x}_{k}\right) .
$$

ADAM optimizer: CD with exp. moving avgs. of ∇ and its square.

Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

Demo: Conjugate Gradient Method [cleared]

Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

$$
\left(\alpha_{k}, \beta_{k}\right)=\operatorname{argmin}_{\alpha_{k}, \beta_{k}}\left[f\left(\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)\right)\right]
$$

- Will see in more detail later (for solving linear systems)
- Provably optimal first-order method for the quadratic model problem
- Turns out to be closely related to Lanczos (A-orthogonal search directions)

Demo: Conjugate Gradient Method [cleared]

$$
\text { orth: } x^{\top} y=0 \quad \text { Atorth: } x^{\top} A_{y} y=0
$$

A spd

$$
\begin{aligned}
& A=Q \prod_{\Gamma} Q^{\top} \\
& \text { diay }>0 \\
& \dot{x}^{\top} A^{\top} s_{y}=\left(Q^{\top} x\right) D\left(Q^{\top} y\right)
\end{aligned}
$$

Nelder-Mead Method

Idea:
simplex yymnastics

Demo: Nelder-Mead Method [cleared]

Newton's method ($n \mathrm{D}$)
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
What does Newton's method look like in n dimensions?
G New re in ID:
solve $f^{\prime}=0$

$$
\begin{array}{r}
f(\vec{x}+\vec{s}) \pi f^{f(\vec{x})+\nabla f(\vec{x})_{s}^{\top}+\frac{1}{2} \stackrel{s}{\top}^{\top} H_{f}(\vec{x}) \vec{s}} \\
\hat{f}(\vec{s})
\end{array}
$$

Newton's method ($n \mathrm{D}$): Observations

Drawbacks?

- Need 2 derisatives
- exponsive: veed Hession solve
- depenalent on cond. of Hessim

Demo: Newton's Method in n dimensions [cleared]

Quasi-Newton Methods
Secant/Broyden-type ideas carry over to optimization. How?
Come up with a way to update to update the approximate Hessian.

$$
x_{n+1}=x_{k}-\alpha_{k} B_{k}^{-1} \nabla f(\vec{x})
$$

$\alpha_{k} \rightarrow$ line search paramelior
$\dot{S}_{k}=\vec{x}_{k+1}-\vec{x}_{k}$
$\bar{y}_{k}=\nabla f\left(\vec{x}_{n+1}\right)-\nabla f\left(\vec{x}_{k}\right)$
$B_{k+1}=y_{k} \in \sec a n$ condition
BFGS: Secant-type method, similar to Broyden:

$$
B_{k+1}=B_{k}+\frac{\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{T}}{\boldsymbol{y}_{k}^{T} \boldsymbol{s}_{k}}-\frac{B_{k} \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{T} B_{k}}{\boldsymbol{s}_{k}^{T} B_{k} \boldsymbol{s}_{k}}
$$

Nonlinear Least Squares: Setup

What if the f to be minimized is actually a 2 -norm?

$$
f(\boldsymbol{x})=\|\boldsymbol{r}(\boldsymbol{x})\|_{2}, \quad \boldsymbol{r}(\boldsymbol{x})=\boldsymbol{y}-\boldsymbol{a}(\boldsymbol{x})
$$

