Exan 3 next week HWD 4ch 1 -> (hoptfully) tody

> Gods, 10 opt methods nD opt methods ~ inchlinear lsg,

Newton's Method

Reuse the Taylor approximation idea, but for optimization.

$$\begin{array}{l} x=x_{k} \longrightarrow p(x+h) \approx p(x) + p'(x)h + p''(x)h^{2} =:\hat{p}(h) \\ O \stackrel{!}{\Rightarrow} \hat{p}'(h) = p'(x) + p''(x)h \longrightarrow h - - \frac{p'(x)}{p''(x)} \\ \times_{k+1} = \times_{k} - \frac{p'(x_{k})}{p''(x_{k})} & \text{Newlow for solving} \\ \xrightarrow{} \text{locally equality. conv. be cause equily.} \\ \xrightarrow{} \text{to solve-y Newlow} \end{array}$$

Demo: Newton's Method in 1D [cleared]

Steepest Descent/Gradient Descent

Given a scalar function $f : \mathbb{R}^n \to \mathbb{R}$ at a point \boldsymbol{x} , which way is down?

Direction of skeepest deg.
$$-\nabla f$$

 $\overline{X}_{u,\overline{v}} = \overline{X}_{u} + \alpha s_{u}$ $S_{u} = -\nabla f(x_{u})$
 T
 $\alpha \mapsto f(x_{u} + \alpha s_{u}) \in \min. that$
"line south"
Emploidally : linew conv.

Demo: Steepest Descent [cleared] (Part 1)

Steepest Descent: Convergence

Consider quadratic model problem:

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x} + \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x}$$

where A is SPD. (A good model of f near a minimum.)

Steepest Descent: Convergence

Consider quadratic model problem:

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x} + \boldsymbol{c}^{T}\boldsymbol{x}$$

where A is SPD. (A good model of f near a minimum.)

Define error $\boldsymbol{e}_k = \boldsymbol{x}_k - \boldsymbol{x}^*$. Then can show: $||\boldsymbol{e}_{k+1}||_{A} = \sqrt{\boldsymbol{e}_{k+1}^{\mathsf{T}} A \boldsymbol{e}_{k+1}} = \frac{\sigma_{\max}(A) - \sigma_{\min}(A)}{\sigma_{\max}(A) + \sigma_{\min}(A)} ||\boldsymbol{e}_{k}||_{A}$ \rightarrow confirms linear convergence. Convergence constant related to conditioning: $\frac{\sigma_{\max}(A) - \sigma_{\min}(A)}{\sigma_{\max}(A) + \sigma_{\min}(A)} \stackrel{\frown}{=} \frac{\kappa(A) - 1}{\kappa(A) + 1}.$

Hacking Steepest Descent for Better Convergence Extrapolation methods:

Heavy ball method:

Demo: Steepest Descent [cleared] (Part 2)

Hacking Steepest Descent for Better Convergence Extrapolation methods:

Optimization in Machine Learning

What is stochastic gradient descent (SGD)?

Optimization in Machine Learning

What is stochastic gradient descent (SGD)?

Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

Demo: Conjugate Gradient Method [cleared]

Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

outh: xty=0 Aroth; xtAg=0

$$A = Q D Q^{\dagger}$$

Idea:

Demo: Nelder-Mead Method [cleared]

Newton's method (n D): Observations

Drawbacks?

Need 2 devisatives
expansise : need Hossian solve
dependent on cond. of Hossian

Demo: Newton's Method in n dimensions [cleared]

Quasi-Newton Methods

Secant/Broyden-type ideas carry over to optimization. How? Come up with a way to update to update the approximate Hessian.

$$B_{k+1} = B_k + \frac{\mathbf{y}_k \mathbf{y}'_k}{\mathbf{y}_k^T \mathbf{s}_k} - \frac{B_k \mathbf{s}_k \mathbf{s}'_k B_k}{\mathbf{s}_k^T B_k \mathbf{s}_k} \quad \boldsymbol{\leqslant}$$

Nonlinear Least Squares: Setup

What if the f to be minimized is actually a 2-norm?

$$f(x) = \|r(x)\|_2, \quad r(x) = y - a(x)$$