Anvincements

- exam 3
- use linh in exan to go to Japgter lab
NOT relate... / lab

Revioun

$$
\begin{aligned}
x_{k+1}= & x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)} \quad \text { Copt 1D } \\
& \left(x_{k+1}-x_{k}-\frac{f\left(x_{1}\right)}{f^{\prime \prime}\left(x_{k}\right)} \text { for solvg }\right) \\
\vec{x}_{k+1}= & \vec{x}_{k}-H_{f}\left(x_{k}\right)^{\prime} D f
\end{aligned}
$$

Gools $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- nonlir Qsg
- inter polation

Nonlinear Least Squares: Setup
What if the $(f$ to be minimized is actually a 2 -norm?

$$
\begin{gathered}
f(\boldsymbol{x})=\|\boldsymbol{r}(\boldsymbol{x})\|_{2}, \quad \boldsymbol{r}(\boldsymbol{x})=\boldsymbol{y}-\boldsymbol{a}(\boldsymbol{x}) \\
\varphi(\vec{x})=\frac{1}{2} \vec{r}(\vec{x})^{T_{r}}(x) \\
\frac{\partial}{\partial_{x_{i}}} \varphi=\frac{1}{2} \sum_{j=1} \frac{\partial}{\partial_{x_{i}}}\left(r_{j}(\vec{x})\right)^{2}=\sum_{j}\left(\frac{\partial}{\partial x_{i}} r_{i}(\hat{x}) r_{j}(\vec{x})\right. \\
\nabla \varphi=\partial_{\vec{r}}^{\pi}(\theta r(\vec{x})
\end{gathered}
$$

Gauss-Newton
For brevity: $J:=J_{r}(x)$.

$$
\begin{aligned}
& \left.H_{\varphi}(\vec{x})=\hat{J}_{r}^{+}\right)_{r}+\underbrace{\sum_{i} r_{i} H_{r_{i}}}_{\begin{array}{c}
\text { painful } \\
\text { maybe small }
\end{array}} \\
& \tilde{H}(\vec{x})=J_{r}^{+} j^{2}
\end{aligned}
$$

Gauss-Newton: Observations?

Demo: Gauss-Newton [cleared]

Observations?

Gauss-Newton: Observations?

Demo: Gauss-Newton [cleared]

Observations?

- Newton on its own is still only locally convergent
- Gauss-Newton is clearly similar
- It's worse because the step is only approximate \rightarrow Much depends on the starting guess.

Levenberg-Marquardt
If Gauss-Newton on its own is poorly conditioned, can try Levenberg-Marquardt:

$$
\left(\partial^{\top} \partial+\mu_{k} I\right) s_{a}=J^{t} r
$$

Regnanization dem
Ls for:

$$
\binom{\vec{r}}{\sqrt[\mu_{k}]{ } I} \quad S \cong\binom{\vec{r}}{\overrightarrow{0}}
$$

Outline

Introduction to Scientific Computing
Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation
Introduction
Methods
Error Estimation
Piecewise interpolation, Splines

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Interpolation: Setup

Given: $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$ Wanted: Function f so that $f\left(x_{i}=y_{i}\right.$
How is this not the same as function fitting? (from least squares)

Interpolation: Setup

Given: $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$
Wanted: Function f so that $f\left(x_{i}\right)=y_{i}$
How is this not the same as function fitting? (from least squares)
H's very similar-but the key difference is that we are asking for exact equality, not just minimization of a residual norm.
\rightarrow Better error control, error not dominated by residual
Idea: There is-an underlying function that we are approximating from the known point values.

Error here: Distance from that underlying function

Interpolation: Setup (II)

Given: $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$
Wanted: Function f so that $f\left(x_{i}\right)=y_{i}$
Does this problem have a unique answer?

Interpolation: Setup (II)

Given: $\left(x_{i}\right)_{i=1}^{N},\left(y_{i}\right)_{i=1}^{N}$
Wanted: Function f so that $f\left(x_{i}\right)=y_{i}$
Does this problem have a unique answer?

No-there are infinitely many functions that satisfy the problem as stated:

Interpolation: Importance

Why is interpolation important?

Interpolation: Importance

Why is interpolation important?

It brings all of calculus within range of numerical operations.

- Why?

Because calculus works on functions.

- How?

1. Interpolate (go from discrete to continuous)
2. Apply calculus
3. Re-discretize (evaluate at points)

Making the Interpolation Problem Unique

Existence/Sensitivity
Solution to the interpolation problem: Existence? Uniqueness?
Existence / uniyceress of the linear system
Sensitivity?
sensitivity of the solve: $k(v)$

Lebesgue constant: \downarrow

$$
\max _{x \in[a, b]}\left|p_{n+1}(x)\right| \leq \Lambda\|y\|_{\infty}
$$

Lebesgue coast:

- alephs an $\left(x_{i}\right),\left(p_{i}\right)$
- same for all polynomial bases

Modes and Nodes (aka Functions and Points)

Both function basis and point set are under our control. What do we pick?
Ideas for points:

Ideas for basis functions:

- Monomials $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- Functions that make $V=I \rightarrow$ 'Lagrange basis'
- Functions that make V triangular \rightarrow 'Newton basis'
- Splines (piecewise polynomials)
- Orthogonal polynomials
- Sines and cosines
- 'Bumps' ('Radial Basis Functions')
- Equispaced
- 'Edge-Clustered' (so-called Chebyshev/Gauss/... nodes)

Specific issues:

- Why not monomials on equispaced points?
Demo: Monomial interpolation [cleared]
- Why not equispaced?

Demo: Choice of Nodes for Polynomial Interpolation [cleared]
agrange interpolation
Find a basis so that $V=I$, ie.

$$
\varphi_{j}\left(x_{i}\right)= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \varphi_{1}(x)=\frac{x_{1}, x_{2}, x_{3}}{\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}\left(x-x_{3}\right)} \\
& \varphi_{2}(x)=\frac{\left(x-x_{1}\right) \quad\left(x_{2}-x_{3}\right)}{\left(x_{2}-x_{1}\right)} \\
& \varphi_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{2}-x_{2}\right)}
\end{aligned}
$$

Lagrange Polynomials: General Form

Write down the Lagrange interpolant for nodes $\left(x_{i}\right)_{i=1}^{m}$ and values $\left(y_{i}\right)_{i=1}^{m}$.

$$
p_{n-1}(x)=\sum_{j=1}^{n_{1}} y_{j} \varphi_{j}(x)
$$

Newton Interpolation

Find a basis so that V is triangular.
\square
Why not Lagrange/Newton?

