Arromemarts
Exan 3
Recitation section
Mouday 2:30 Loomis 151

Revién
Vam, conditionif Nunge's plenomeno

Goals

Lagrange Polynomials: General Form

$$
\varphi_{j}(x)=\frac{\prod_{k=1, k \neq j}^{m}\left(x-x_{k}\right)}{\prod_{k=1, k \neq j}^{m}\left(x_{j}-x_{k}\right)}
$$

Write down the Lagrange interpolant for nodes $\left(x_{i}\right)_{i=1}^{m}$ and values $\left(y_{i}\right)_{i=1}^{m}$.

$$
p_{m-1}(x)=\sum_{j=1}^{m} \lambda_{j} \varphi_{j}(x)
$$

Newton Interpolation
Find a basis so that V is triangular.

$$
\varphi_{j}(x)=\prod_{k=1}^{j-1}\left(x-x_{k}\right) \quad(j=1 \ldots n)
$$

$$
\hat{\imath}_{\text {employ product }}(j>1): 1
$$

forward subs on \triangle Vim: $O\left(n^{2}\right)$

Why not Lagrange/Newton?

Newton Interpolation
Find a basis so that V is triangular.

$$
\begin{aligned}
& \qquad \rho_{j}(x)=\prod_{k=1}\left(x-x_{k}\right) \quad(j=1 \ldots n) \\
& \\
& \text { forward subst on } \quad \backslash \text { vamp product } \quad(j=1): 1
\end{aligned}
$$

Why not Lagrange/ Newton?
Cheap to form, expensive to evaluate, expensive to do calculus on.

Better conditioning: Orthogonal polynomials

What caused monomials to have a terribly conditioned Vandermonde?

What's a way to make sure two vectors are not like that?

But polynomials are functions!

Better conditioning: Orthogonal polynomials

What caused monomials to have a terribly conditioned Vandermonde?

Being close to linearly dependent.
What's a way to make sure two vectors are not like that?
Orthogonality
But polynomials are functions!

Orthogonality of Functions

$$
f(x), g(x)
$$

How can functions be orthogonal?

$$
\begin{aligned}
& \vec{f} \cdot \vec{g}=\sum f ; g_{i}=(\vec{f}, \vec{g}) \\
& (f, g)=\int_{-1}^{1} f(x) g(x) d x \\
& \|f\|=\sqrt{(f, f)}=\sqrt{\int f^{2}(y) d x}
\end{aligned}
$$

Constructing Orthogonal Polynomials
How can we find an orthogonal basis?
Gran. Schmidt
Demo: Orthogonal Polynomials [cleared] — Got: Legendre polynomials. But how can I practically compute the Legendre polynomials?

Three -term recurrence:

$$
\begin{aligned}
& P_{0}=1 \quad P_{1}=x \\
& (n+1) P_{n+1}=(2 n+1) \times P_{n}-n P_{n-1}
\end{aligned}
$$

Idea: Generalise the inner product to include weight:

$$
(f, g)_{v}=\int_{-1}^{1} f(x) y(x) w(x) d x
$$

Chebyshev Polynomials: Definitions

Three equivalent definitions:

- Result of Gram-Schmidt with weight $1 / \sqrt{1-x^{2}}$. What is that weight?
half - circle
(Like for Legendre, you won't exactly get the standard normalization if you do this.)
- $T_{k}(x)=\cos \left(k \cos ^{-1}(x)\right)$
- $T_{k}(x)=2 x T_{k-1}(x)-T_{k-2}(x)$ plus $T_{0}=1, T_{1}=x$

Chebyshev Interpolation
What is the Vandermonde matrix for Chebyshev polynomials?
What nodes?

$$
\nabla_{n}(\lambda)=\cos \left(k \cos ^{-1}(x)\right)
$$

$$
x_{i}=\cos \left(\frac{i}{k} \pi\right) \quad(i=0,1, \ldots, k)
$$

These are minima/ maxima of T_{k}

$$
\begin{aligned}
V_{i j}=T_{j}\left(x_{i}\right) & =\cos \left(j \cos ^{-1}\left(\cos \left(\frac{i}{k} \pi\right)\right)\right) \\
& =\cos \left(\frac{i \cdot j}{k} \pi\right)
\end{aligned}
$$

Discrete cosine transom mate c and inverse available in $O(k \log k)$ tijue.

Chebyshev Nodes

Might also consider roots (instead of extrema) of T_{k} :

$$
x_{i}=\cos \left(\frac{2 i-1}{2 k} \pi\right) \quad(i \neq 1 \ldots, k) .
$$

Vandermonde for these (with T_{k}) can be applied in $O(N \log N)$ time, too.
Edge-clustering seemed like a good thing in interpolation nodes. Do these do that?

Demo: Chebyshev Interpolation [cleared] (Part I-IV)

Truncation Error in Interpolation
If f is n times continuously differentiable on a closed interval I and $p_{n-1}(x)$ is a polynomial of degree at most n that interpolates f at n distinct points $\left\{x_{i}\right\}(i=1, \ldots, n)$ in that interval, then for each x in the interval there exists ξ in that interval such that

$$
\begin{aligned}
& f(x)-p_{n-1}(x)=\frac{f^{(n)}(\xi(x))}{n!}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) . \\
& R(\lambda):=f(x)-p_{n+1}(x) \\
& Y_{x}(f)=R(d)-\frac{R(x)}{W(x)} W(d) \\
& \text { enow is } 20 \\
& \text { Let } x \in I \backslash\left\{x_{11}, \ldots, x_{n}\right\} .
\end{aligned}
$$

Truncation Error in Interpolation: contd.

$$
R(d)=f(t)-p_{h-1}(t)
$$

$$
Y_{x}(t)=R(t)-\frac{R(x)}{W(x)} W(t) \quad \text { where } \quad W(t)=\prod_{i=1}^{n}\left(t-x_{i}\right)
$$

- x_{i} are roots of $R(t)$ and $W(f)$ $Y_{x}(x)=0$. $\quad Y_{x}$ has $n+1$ roots. (x and the nod de)
- Y_{x}^{\prime} has n roots ... $Y_{x}^{(n)}$ has 1 root in I. Let's call that root ξ.

$$
\begin{aligned}
Y_{x}^{(n)}(t) & =f^{(n)}(t)-\frac{R(x)}{W(x)} n!\quad W(x) \frac{f^{(n)}(\xi)}{n!}=R(x) \\
O=y^{(n)}(\xi) & =f^{(n)}(\xi)-\frac{R(x)}{W(x)} n!
\end{aligned}
$$

Error Result: Simplified Form
Boil the error result down to a simpler form.

$$
f(x)-p_{n-1}(x)=\frac{f^{(n)}(\xi(x))}{n!}\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)
$$

Assure $x_{1}<\cdots<x_{2}$

$$
\left|f^{(-1)}(x)\right| \leqslant M \quad(x \in I)
$$

$n=$ length of the interval Observe: ${ }^{G}\left|x-x_{i}\right| \leqslant h$

$$
\max _{x}\left|f(x)-p_{n-1}(\lambda)\right| \subseteq C \operatorname{Mn} h^{n}
$$

Demo: Interpolation Error [cleared]

$$
E(h)=O\left(h^{n}\right)
$$

nth order convergence

Going piecewise: Simplest Case

Construct a pieceweise linear interpolant at four points.
$x_{0}^{x_{0}, y_{0}}$

Why three intervals?

		x_{2}, y_{2}
$f_{2}=a_{2} x+b_{2}$	$x_{3}=a_{3} x+b_{3}$	
2 unk.	2 unk.	
$f_{2}\left(x_{1}\right)=y_{1}$	$f_{3}\left(x_{2}\right)=y_{2}$	
$f_{2}\left(x_{2}\right)=y_{2}$	$f_{3}\left(x_{3}\right)=y_{3}$	
2 eqn.	2 eqn.	

(to be covered after break)

Piecewise Cubic ('Splines')

x_{1}, y_{1}

$$
a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}
$$

x_{3}, y_{3}
(to be covered after break)

Piecewise Cubic ('Splines'): Accounting

(to be covered after break)

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation
Numerical Integration
Quadrature Methods
Accuracy and Stability
Gaussian Quadrature
Composite Quadrature
Numerical Differentiation
Richardson Extrapolation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

[^0]Additional Topics

Conditioning

Derive the (absolute) condition number for numerical integration.

$$
\begin{aligned}
f(x) & \approx \sum_{i=1}^{n} f\left(x_{i}\right) l_{i}(x) \\
\int_{a}^{b} f(x) d x & \approx \sum_{i=1}^{n} f\left(x_{i}\right) \underbrace{\int_{a}^{b} l_{i}(x) d x}_{\omega_{i}}
\end{aligned}
$$

"Quadratare rulen

$$
x_{i} ; \text { nodes }
$$

"squart" = "Quadralt in Fermm

Interpolatory Quadrature: Computing Weights How do the weights in interpolatory quadrature get computed?

Demo: Newton-Cotes weight finder [cleared]

[^0]: Fast Fourier Transform

