Announcements
Goals

- ICES
- 4CH assignments 182
- Content cutoff for final: Thu Nor 30
- Splines
- nus. integration

Revion

Interpolation basis φ_{i}
nodes $x 1$

$$
\begin{gathered}
V=\left(\varphi_{\dot{j}}\left(x_{i}\right) \text { ii } \quad V \vec{\alpha}=\vec{y}\right. \\
\max \left|f \cdot p_{n-1}(x)\right| \leq C_{\max }\left|f^{(n)}(x)\right| h^{n}
\end{gathered}
$$

© "nth order convergence"

Going piecewise: Simplest Case

Construct a pieceweise linear interpolant at four points.

Why three intervals?

Rend intervals, one middle

Piecewise Cubic ('Splines')

Piecewise Cubic ('Splines'): Accounting

$$
\begin{aligned}
& \begin{array}{c}
\left.\right|_{a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}} ^{f_{1}, y_{0}}{ }_{\text {Humhuowns! }}^{x_{1}, y_{1}} \quad \varphi \text { Nintervals }
\end{array} \\
& \text { \# conditions: } 2 N \text { intervals }+2 \text { Niddle nodes }+2 \\
& \left(\begin{array}{l}
\text { Nintervals }-1=\text { mididlle hodes } \\
\rightarrow=2 \text { Nintervals }+2\left(N_{\text {intervals }}-1\right)+2=4 \text { Ninfer rels }
\end{array}\right.
\end{aligned}
$$

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation
Numerical Integration
Quadrature Methods
Accuracy and Stability
Gaussian Quadrature
Composite Quadrature
Numerical Differentiation
Richardson Extrapolation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

[^0]Additional Topics

Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)

What about existence and uniqueness?

Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)
Given a, b, f, compute (approximately!)

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

What about existence and uniqueness?

- Answer exists e.g. if f is integrable in the Riemann or Lebesgue senses.
- Answer is unique if f is e.g. piecewise continuous and bounded. (this also implies existence)

Conditioning

Derive the (absolute) condition number for numerical integration.

$$
\begin{aligned}
\hat{f}(x) & =f(x)+e(x) \\
& \left|\int_{a}^{b} f(x) d x-\int_{a}^{b} \hat{f}(x) d x\right| \\
& =\left|\int_{a}^{b} e(x) d x\right| s \int_{a}^{b}|e(x)| d x \leq(b-a) \max _{x \in(a), b]} \mid(e(x) \mid
\end{aligned}
$$

Interpolatory Quadrature: Examples

$$
\begin{aligned}
& f(x) \approx p_{n-1}(x)=\sum_{i=1}^{n} f\left(x_{i}\right) \ell_{i}(x) \\
& \int^{b} f(x) d x \approx \sum^{n} \text { Lagrange poly } \\
& \int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \underbrace{\int_{a}^{b} \ell_{i}(x) d x}_{\omega_{i}}
\end{aligned}
$$

> By construction: integrates polynomials of up to degree $n-1$ exactly

Interpolatory Quadrature: Computing Weights
How do the weights in interpolatory quadrature get computed?

$$
\begin{aligned}
& \left.\right|_{1}, x_{1} \ldots, x^{h-1} \\
& b-a>\int_{a}^{b} 1 d x=\omega_{1} \cdot 1+\cdots+\omega_{n} \cdot 1 \\
& {\left[\frac{1}{2} \lambda^{2}\right]_{a}^{b}=\int_{a}^{b} x d x=\omega_{1} \cdot x_{1}+\cdots+\omega_{n} \cdot x_{n}} \\
& {\left[\frac{1}{n} x^{n}\right]_{n}^{b}=\int_{a}^{b} x^{n-1} d x^{c} w_{1} \cdot x_{1}^{n-1}+\cdots+\omega_{n} \cdot x_{n}^{n-1}} \\
& \text { nuethod of undedemiced } \\
& \text { coefficient's }
\end{aligned}
$$

Examples and Exactness
To what polynomial degree are the following rules exact?

Midpoint rule $\quad(b-a) f\left(\frac{a+b}{2}\right)$

Trapezoidal rule $\quad \frac{b-a}{2}(f(a)+f(b))$
Simpson's rule $\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)$
\square
\square

$$
b-n=\int_{a}^{b} 1 \approx \sum_{1} w_{i}
$$

Observed: symmetric volos \&odd a ode cont: extra degree of

Interpolatory Quadrature: Accuracy
Let p_{n-1} be an interpolant of f at nodes x_{1}, \ldots, x_{n} (of degree $n-1$)
Recall

$$
\sum_{i} \omega_{i} f\left(x_{i}\right)=\int_{a}^{b} p_{n-1}(x) \mathrm{d} x
$$

What can you say about the accuracy of the method?

$$
\begin{aligned}
&\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} p_{n-1}(x) d x\right| \\
& \leqslant \int_{a}^{b}\left|f(x)-p_{h-1}(x)\right| d x \\
& \leq(b-a) \max _{x \in(n, b)}\left|f(x)-p_{h-1}^{-1}(x)\right| \\
& \leq C h \max _{x \in(a, b)}\left|f^{(n)}(x)\right| h^{h} \\
& \leq C \max ^{(n)}\left|f^{(n)}\right| h^{n+1}
\end{aligned}
$$

Quadrature: Overview of Rules

"Newton - Cotes" rules

	n	Deg.	Ex.Int.Des. (w/odd)	Intp.Ord. \int^{4}	Quad.Ord. (regular) $h^{\text {n. }}$	Quad.Ord. (w/odd) h ?
		$n-1$	$(n-1)+1_{\text {odd }}$	n	$n+1$	$(n+1)+1_{\text {odd }}$
\rightarrow Midp.	1	0	1	1	2	3
Trapz.	2	1	1	2	3	3
Simps.	3	2	3	3	4	5
S. 3/8	4	3	3	4	5	5

- "Deg.": Degree of polynomial used in interpolation ($=n-1$)
- "Ex.Int.Deg.": Polynomials of up to (and including) this degree actually get integrated exactly. (including the odd-order bump)
- "Intp.Ord.": Order of Accuracy of Interpolation: $O\left(h^{n}\right)$
- "Quad.Ord. (regular)": Order of accuracy for quadrature predicted by the error result above: $O\left(h^{n+1}\right)$
- "Quad.Ord. (w/odd):" Actual order of accuracy for quadrature given 'bonus' degrees for rules with odd point count
Observation: Quadrature gets (at least) 'one order higher' than interpolation-even more for odd-order rules. (i.e. more accurate)

Interpolatory Quadrature: Stability
Let p_{n} be an interpolant of f at nodes x_{1}, \ldots, x_{n} (of degree $n-1$)
Recall

$$
\sum_{i} \omega_{i} f\left(x_{i}\right)=\int_{a}^{b} p_{n}(x) \mathrm{d} x
$$

What can you say about the stability of this method?

$$
\sum w_{i}=b-a
$$

$$
f(x)=f(x)+e(x) \quad \text { when biogen. }
$$

$$
\left.\left|\sum w_{i} f\left(x_{i}\right)-\sum \omega_{i} \hat{f}\left(x_{i}\right)\right| \leq \sum\left|w_{i} e\left(x_{i}\right)\right| \leq\left(\sum\left|w_{i}\right|\right)_{x_{0} \in \mid \tilde{n}_{, j}, b} \mid e_{1}\right)
$$

So, what quadrature weights make for bad stability bounds?
negative weights

About Newton-Cotes

What's not to like about Newton-Cotes quadrature?
Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)

About Newton-Cotes

What's not to like about Newton-Cotes quadrature?
Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)

In fact, Newton-Cotes must have at least one negative weight as soon as $n \geqslant 11$.

More drawbacks:

- All the fun of high-order interpolation with monomials and equispaced nodes (i.e. convergence not guaranteed)
- Weights possibly non-negative (\rightarrow stability issues)
- Coefficients determined by (possibly ill-conditioned) Vandermonde matrix
- Thus hard to extend to arbitrary number of points.

Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes, too? Hope: More design freedom \rightarrow Exact to higher degree.

Demo: Gaussian quadrature weight finder [cleared]

[^0]: Fast Fourier Transform

