Announcements
Goals
ICES
4CHI bumped to Der 6 Final content cutoff today
Recitation session (Monday)
Exam 3 page grades: 2:30) liken this weelen I
Review
Newton - Cores

$$
\int_{i}^{b} f(u) d x \approx \sum_{i=1}^{n} g\left(x_{i}\right) \omega_{i}
$$

method of under cooff.

$$
V^{\top} \vec{\omega}=\left(\int_{a}^{b} x^{i} d x\right)
$$

${ }^{\wedge}$ nodes go here
Cheby nodesthasis: Clenshaw. Curtis todd node cont

Gaussian Quadrature

So far: nodes chosen from outside.
Can we gain something if we let the quadrature rule choose the nodes, too? Hope: More design freedom \rightarrow Exact to higher degree.

Could: set up meth od of under, cerf. with unknown nodes \rightarrow yuck y_{7} non linear

Demo: Gaussian quadrature weight finder [cleared]

Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness of the function.
Idea: Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement.

Error in Composite Quadrature
\qquad
What can we say about the error in the case of composite quadrature?

Composite Quadrature: Notes

Observation: Composite quadrature loses an order compared to non-composite.

Idea: If we can estimate errors on each subinterval, we can shrink (e.g. by splitting in half) only those contributing the most to the error. (adaptivity)

Taking Derivatives Numerically
Why shouldn't you take derivatives numerically?

$$
f(x)=e^{i \alpha x} \quad \max |f(x)| \leq 1 \quad \max \left|f^{\prime}\right|=\alpha
$$

conditioning of derivatives is arbitran'ly bad

$$
\begin{aligned}
\underset{\text { catastrophic }}{\text { cancellation }} \rightarrow & f \underbrace{f(x+h)-f(x)}_{h} \quad(h \rightarrow 0) \\
& =\frac{1}{h} f(x+h)-\frac{1}{h} f(.)
\end{aligned}
$$

Numerical Differentiation: How?
How can we take derivatives numerically?

$$
\begin{aligned}
\vec{x}=\left(x_{i}\right)_{i=1}^{n} & V_{i j}
\end{aligned}=\varphi_{j}\left(x_{i}\right) .
$$

Numerical Differentiation: Accuracy
How accurate is numerical differentiation (with a polynomial basis)?

$$
\begin{aligned}
& f(x)-p_{n-1}(x)=\frac{f^{(n)}(\varphi)^{n}}{n!} \prod_{i=1}^{n}\left(x-x_{i}\right) \\
& f^{\prime}(x)-p_{n-1}^{\prime}(x) \approx \frac{f^{(n)}(\varphi)}{n!} \prod_{i=1}^{\left(\prod_{i=1}^{n}\left(x-x_{i}\right)\right) \mid} \underbrace{\underbrace{n-1}_{i=1}}_{\prod_{i=1}^{n-1}\left(x-e_{i}\right)}
\end{aligned}
$$

Differentiation Matrices

How can numerical differentiation be cast as a matrix-vector operation?

$$
D=V^{\prime} V^{-1}
$$

Demo: Taking Derivatives with Vandermonde Matrices [cleared] (Build D)

Properties of Differentiation Matrices

How do I find second derivatives?

$$
\overline{D^{2}}
$$

Does D have a nullspace?
constants

Numerical Differentiation: Shift and Scale

Does D change if we shift the nodes $\left(x_{i}\right)_{i=1}^{n} \rightarrow\left(x_{i}+c\right)_{i=1}^{n}$?

it does not

Does D change if we scale the nodes $\left(x_{i}\right)_{i=1}^{n} \rightarrow\left(\alpha x_{i}\right)_{i=1}^{n}$?

$$
\int_{\alpha x}=\int_{x} / \alpha
$$

Finite Difference Formulas from Diff. Matrices

How do the rows of a differentiation matrix relate to FD formulas?

Assume a large equispaced grid and 3 nodes $w /$ same spacing. How to use?

Finite Differences: via Taylor

