Announcements

- ICES
- Final
- 4CH2 ; no penalty
iE fumed in by Dec 12
- Exam 3 page grades out

Review

Goals

- Noise and differentiation
- Richard extrapolation
- IV

More Finite Difference Rules

Similarly:

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right)
$$

(Centered differences)

Can also take higher order derivatives:

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+O\left(h^{2}\right)
$$

Can find these by trying to match Taylor terms.
Alternative: Use linear algebra with interpolate-then-differentiate to find FD formulas.
Demo: Finite Differences vs Noise [cleared]
Demo: Floating point vs Finite Differences [cleared]

Richardson Extrapolation
Deriving high-order methods is hard work. Can I just do multiple low-order approximations (with different h and get a high-order one out?
Suppose we have $F=\tilde{F}(h)+O\left(h^{p}\right)$ and $\tilde{F}\left(h_{1}\right)$ and $\tilde{F}\left(h_{2}\right)$.

$$
\begin{gathered}
\tilde{F}\left(h_{1}\right) \quad \tilde{F}\left(h_{2}\right) \\
\tilde{F}=\tilde{F}\left(h_{1}+a h^{\rho}+O\left(h^{q}\right)\right. \\
F=\alpha \tilde{F}\left(h_{1}\right)+\beta \tilde{F}\left(h_{2}\right)+O\left(h^{q}\right) \\
\alpha+\beta=1 \\
\alpha o f h_{1}^{\rho}+\beta \alpha h_{2}^{\rho}=0 \Leftrightarrow \alpha h_{1}^{\rho}+(1-\alpha) h_{2}^{\rho}=0 \\
\alpha=\frac{-h_{2}^{\rho}}{h_{1}^{\rho}-h_{2}^{p}}
\end{gathered}
$$

Richardson Extrapolation: Observations,

What are α and β for a first-order (e.g. finite-difference) method if we choose $h_{2}=h_{1} / 2$?

Demo: Richardson with Finite Differences [cleared]

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs
Existence, Uniqueness, Conditioning
Numerical Methods (I)
Accuracy and Stability
Stiffness
Numerical Methods (II)

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

What can we solve already?

- Linear Systems: yes
- Nonlinear systems: yes
- Systems with derivatives: no

Some Applications

IVPs	BVPs
Population dynamics $y_{1}^{\prime}=y_{1}\left(\alpha_{1}-\beta_{1} y_{2}\right)($ prey $)$ bridge load $y_{2}^{\prime}=y_{2}\left(-\alpha_{2}+\beta_{2} y_{1}\right)$ pollutant concentration (predator) (steady state) chemical reactions temperature equations of motion (steady state) waves (time-harmonic) 	

Demo: Predator-Prey System [cleared]

Initial Value Problems: Problem Statement
Want: Function $\boldsymbol{y}:[0, T] \rightarrow \mathbb{R}^{n}$ so that

- $\boldsymbol{y}^{(k)}(t)=\boldsymbol{f}\left(t, \boldsymbol{y}, \boldsymbol{y}^{\prime}, \boldsymbol{y}^{\prime \prime}, \ldots, \boldsymbol{y}^{(k-1)}\right.$) (explicit), or
- $\boldsymbol{f}\left(t, \boldsymbol{y}, \boldsymbol{y}^{\prime}, \boldsymbol{y}^{\prime \prime}, \ldots, \boldsymbol{y}^{(k)}\right)=0 \quad$ (implicit)
are called explicit/implicit k th-order ordinary differential equations (ODEs).
Give a simple example.

$$
y^{\prime}=\alpha y \quad y(t)=e^{\alpha t}
$$

Not uniquely solvable on its own. What else is needed?
$\left.\begin{array}{c}\text { in it int condition } \\ \text { need } k \mid C s(\text { inińal conditions) } \\ \vec{y}(0)=\cdots \\ i \\ y^{(k-1)}(0)=\cdots\end{array}\right]$ VP $\left.\begin{array}{l}\text { initial } \\ \text { value } \\ \text { problem }\end{array}\right]$

Reducing ODEs to First-Order Form

$$
y^{\prime}=\cdots
$$

A k th order ODE can always be reduced to first order. Do this in this example:

$$
\begin{gathered}
y^{\prime \prime}(t)=f(y) \\
{\left[\begin{array}{c}
y_{1} \\
y_{2}
\end{array}\right]^{\prime}(t)=\left[\begin{array}{c}
y_{2}(t) \\
f\left(y_{1}(t)\right)
\end{array}\right] \text { ER red used }} \\
\text { to first-drdo!! } \\
y_{1}^{\prime \prime}(t)=\left(y_{1}^{\prime}(t)\right)^{\prime}=\left(y_{2}(t)\right)^{\prime}=f\left(y_{1}(t)\right)
\end{gathered}
$$

May assume that ODE has bee rewitten fo first order tom.

Properties of ODEs

$$
\vec{y}^{\prime}(t)=f(t, \vec{y})
$$

What is a linear ODE?

$$
f(t, \dot{y})=A(t) \vec{y}+\vec{b}(t)
$$

What is a linear and homogeneous ODE?

$$
f(t, \dot{y})=A(t) \vec{y}
$$

What is a constant-coefficient ODE?
\square

Properties of ODEs (II)

$$
\left.y^{\prime}(t)=f(d) \vec{y}\right)
$$

What is an autonomous ODE?

$$
\left.\begin{array}{l}
y_{n+1}^{\prime}(t)=1 \\
y_{n+1}\left(t_{0}\right)=t_{0}
\end{array}\right\} \quad y_{n+1}(t)=t
$$

May assure the ODE is autonomous

$$
y^{\prime}(t)=f(y(t))
$$

Existence and Uniqueness
Consider the perturbed problem

$$
\left\{\begin{array} { l }
{ \boldsymbol { y } ^ { \prime } (t) = \boldsymbol { f } (\boldsymbol { y }) } \\
{ \boldsymbol { y } (t _ { 0 }) = \boldsymbol { y } _ { 0 } }
\end{array} \left\{\begin{array}{l}
\hat{\boldsymbol{y}}^{\prime}(t)=\boldsymbol{f}(\widehat{\boldsymbol{y}}) \\
\widehat{\boldsymbol{y}}\left(t_{0}\right)=\widehat{\boldsymbol{x}}_{0}
\end{array}\right.\right.
$$

Then if \boldsymbol{f} is Lipschitz continuous (has 'bounded slope'), i.e.

$$
\|\boldsymbol{f}(\boldsymbol{y})-\boldsymbol{f}(\widehat{\boldsymbol{y}})\| \leq L\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|
$$

there exists a unique solution
What does this mean for uniqueness?
\square

Conditioning
Unfortunate terminology accident: "Stability" in ODE-speak
To adapt to conventional terminology, we will use 'Stability' for

- the conditioning of the IVP, and
- the stability of the methods we cook up.

Some terminology:
An IVP is stable if and only if...
the solution at all times depends continuous ly on the IC For all $\tau>0$ there exports a $\delta>0$

$$
\left.\left\|\hat{y}_{0}-y_{0}\right\| \subset \delta \Rightarrow \| y \mid t\right)-\hat{y}(t) \|<\varepsilon \text { for all }
$$

An IVP is asymptotically stable if and only if

$$
\|\hat{y}(d)-y(d)\| \rightarrow 0
$$

Example I: Scalar, Constant-Coefficient

$$
\left\{\begin{array}{l}
y^{\prime}(t)=\lambda y \\
y(0)=y_{0}
\end{array} \quad \text { where } \lambda=a+i b\right.
$$

Solution?

$$
y(t)=y_{0} e^{\lambda t}
$$

When is this stable?

Example II: Constant-Coefficient System

$$
\left\{\begin{array}{l}
\boldsymbol{y}^{\prime}(t)=A \boldsymbol{y}(t) \\
\boldsymbol{y}\left(t_{0}\right)=\boldsymbol{y}_{0}
\end{array}\right.
$$

Assume $V^{-1} \mathrm{AV}=\mathrm{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ diagonal. Find a solution.

$$
\begin{aligned}
\vec{w}(t) & =V^{-1} \vec{y}(t) \\
\vec{w}^{\prime}(t)=V^{-1} \vec{y}^{\prime}(t)=V^{-1} A \vec{y}(t) & =V^{-1} A \vee \vec{w}(t) \\
& =D \vec{w}(d)
\end{aligned}
$$

When is this stable?

$$
\text { If } \quad \operatorname{Re}\left(\lambda_{i}\right)<0
$$

Euler's Method

Discretize the IVP

Euler's method: Forward and Backward

$$
\boldsymbol{y}(t)=\boldsymbol{y}_{0}+\int_{t_{0}}^{t} \boldsymbol{f}(\boldsymbol{y}(\tau)) \mathrm{d} \tau
$$

Use 'left rectangle rule' on integral:

$$
\begin{aligned}
& y_{k}=y_{k-1}+h f\left(y_{k-1}\right) \quad \leftarrow \text { "explicit" } \\
& \text { (plus 'r'chug) }
\end{aligned}
$$

Use 'right rectangle rule' on integral:

$$
y_{k}=y_{k-1}+h f\left(y_{u}\right) \quad \text { implicit }
$$

(solve a nonlinear equalioul)
Demo: Forward Euler stability [cleared]

Global and Local Error

Let $u_{k}(t)$ be the function that solves the ODE with the initial condition $u_{k}\left(t_{k}\right)=y_{k}$. Define the local error at step k as. \ldots

Define the global error at step k as...

About Local and Global Error

A time integrator is said to be accurate of order p if. . .

ODE IVP Solvers: Order of Accuracy

A time integrator is said to be accurate of order p if $\ell_{k}=O\left(h^{p+1}\right)$
This requirement is one order higher than one might expect-why?

Stability of a Method
Find out when forward Euler is stable when applied to $y^{\prime}(t)=\lambda y(t)$.

$$
\begin{aligned}
y_{k} & =y_{k-1}+h \lambda y_{k-1} \\
& =\underbrace{(1+h \lambda)}_{1 \cdot 1<1} y_{k-1}
\end{aligned}
$$

stable if $|\cdot|+h \lambda \mid<1$
Re (hd)

Stability: Systems

What about stability for systems, i.e.

$$
\boldsymbol{y}^{\prime}(t)=A \boldsymbol{y}(t) ?
$$

