Chebyshev polynomials¶
Copyright (C) 2020 Andreas Kloeckner
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as pt
Part I: Plotting the Chebyshev polynomials¶
x = np.linspace(-1, 1, 100)
pt.xlim([-1.2, 1.2])
pt.ylim([-1.2, 1.2])
for k in range(10): # crank up
pt.plot(x, np.cos(k*np.arccos(x)))
Part II: Understanding the Nodes¶
What if we interpolate random data?
n = 50 # crank up
"Extremal" Chebyshev Nodes (or: Chebyshev Nodes of the Second Kind)¶
- Most often used for computation
- Note: Generates $n+1$ nodes -> drop $k$
k = n-1
i = np.arange(0, k+1)
x = np.linspace(-1, 1, 3000)
def f(x):
return np.cos(k*np.arccos(x))
nodes = np.cos(i/k*np.pi)
pt.plot(x, f(x))
pt.plot(nodes, f(nodes), "o")
[<matplotlib.lines.Line2D at 0x7ffad2e9f370>]
Chebyshev Nodes of the First Kind (Roots)¶
- Generates $n$ nodes
i = np.arange(1, n+1)
x = np.linspace(-1, 1, 3000)
def f(x):
return np.cos(n*np.arccos(x))
nodes = np.cos((2*i-1)/(2*n)*np.pi)
pt.plot(x, f(x))
pt.plot(nodes, f(nodes), "o")
[<matplotlib.lines.Line2D at 0x7ffad154d6c0>]
Observe Spacing¶
pt.plot(nodes, 0*nodes, "o")
[<matplotlib.lines.Line2D at 0x7ffad15ba230>]
Part III: Chebyshev Interpolation¶
n = 100
i = np.arange(n, dtype=np.float64)
nodes = np.cos((2*(i+1)-1)/(2*n)*np.pi)
V = np.cos(i*np.arccos(nodes.reshape(-1, 1)))
if 1:
# random data
data = np.random.randn(n)
else:
# Runge's example
data = 1/(1+25*nodes**2)
coeffs = la.solve(V, data)
x = np.linspace(-1, 1, 1000)
Vfull = np.cos(i*np.arccos(x.reshape(-1, 1)))
pt.plot(x, np.dot(Vfull, coeffs))
pt.plot(nodes, data, "o")
[<matplotlib.lines.Line2D at 0x7ffad13908b0>]
Part IV: Conditioning¶
n = 10 # crank up
i = np.arange(n, dtype=np.float64)
nodes = np.cos((2*(i+1)-1)/(2*n)*np.pi)
V = np.cos(i*np.arccos(nodes.reshape(-1, 1)))
la.cond(V)
1.4142135623730963
Part V: Error Result¶
Plot the product term from the estimate of truncation error in interpolation for the Chebyshev nodes: $$\left|\prod_{i=1}^n (x-x_i)\right| $$
def plot_err_prod(nodes, label):
eval_pts = np.linspace(-1, 1, 30000)
product = 1
for xi in nodes:
product = product*(eval_pts-xi)
pt.plot(eval_pts, np.abs(product), label=label)
n = 10 # crank up
i = np.arange(n, dtype=np.float64)
cheb_nodes = np.cos((2*(i+1)-1)/(2*n)*np.pi)
plot_err_prod(cheb_nodes, label="Chebyshev")
if 0:
nodes = np.linspace(-1, 1, n)
plot_err_prod(nodes, label="equispaced")
elif 0:
nodes = cheb_nodes.copy()
nodes[3] += 0.1
plot_err_prod(nodes, label="Perturbed")
pt.legend()
<matplotlib.legend.Legend at 0x7ffad052d6f0>