October 31, 2024 Announcements
 $-HW$ 7
 $-$ 4cH \mid \mid \mid out \mid the \mid fody Goals
 \sim wild thing f_{ov} 10

rool solvig $- n \vert$ I Newlon S \widehat{T} PT

Review

 $-\nabla \rho_l$ $X_{n+1} = g(x_n)$ $\mathcal{L}_{\mathcal{M}} \subset \mathcal{L}_{\mathcal{M}} \left(\mathcal{L}_{\mathcal{M}} \right)$ quad Ald $c = \frac{1}{2}$ $g'(x^*) = 0$

- Newford mo hold - Rates of convergence
b Mlinbility
b quadlance lines

Newton's Method

Derive Newton's method.

Demo: Newton's method [cleared]

Convergence and Properties of Newton

What's the rate of convergence of Newton's method?

Convergence and Properties of Newton

What's the rate of convergence of Newton's method?

Drawbacks of Newton?

Secant Method

What would Newton without the use of the derivative look like?

Convergence of Properties of Secant

Rate of convergence is $\left(1+\sqrt{5}\right)/2\approx 1.618.$ (proof)

Drawbacks of Secant?

 $-$ u on - alongle Demo: Secant Method [cleared] Demo: Convergence of the Secant Method [cleared]

Secant (and similar methods) are called Quasi-Newton Methods.

Convergence of Properties of Secant

Rate of convergence is $\left(1+\sqrt{5}\right)/2\approx 1.618.$ (proof)

Drawbacks of Secant?

▶ Convergence argument only good *locally* Will see: convergence only local (near root) ▶ Slower convergence ▶ Need two starting guesses Demo: Secant Method [cleared]

Demo: Convergence of the Secant Method [cleared]

Secant (and similar methods) are called **Quasi-Newton Methods**.

Improving on Newton?

How would we do "Newton $+ 1$ " (i.e. even faster, even better)?

Improving on Newton?

```
How would we do "Newton + 1" (i.e. even faster, even better)?
```

```
Easy:
```
- \triangleright Use second order Taylor approximation, solve resulting quadratic
- ▶ Get cubic convergence!
- ▶ Get a method that's *extremely fast and extremely brittle*
- ▶ Need second derivatives
- ▶ What if the quadratic has no solution?

Root Finding with Interpolants

Secant method uses a linear approximation to f based on points $f(x_k)$, $f(x_{k-1})$, could use more points and higher-order approximation:

Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally. How could we use that?

$$
\begin{array}{c}\n\overset{\shortparallel}{\cdot}\uparrow\wedge\downarrow\downarrow\qquad\qquad\uparrow\uparrow\downarrow\downarrow\qquad\qquad\downarrow\qquad\qquad\downarrow\qquad\qquad\downarrow\qquad\downarrow\qquad\qquad\downarrow\qquad\downarrow\qquad\downarrow\qquad\qquad\downarrow\qquad\downarrow\qquad\downarrow\qquad\downarrow\qquad\qquad\downarrow\qquad\downarrow\qquad\downarrow\qquad\downarrow\qquad\qquad\downarrow\qquad\downarrow\qquad\q
$$

Achieving Global Convergence

The linear approximations in Newton and Secant are only good locally. How could we use that?

 \blacktriangleright Hybrid methods: bisection $+$ Newton ▶ Stop if Newton leaves bracket \triangleright Fix a region where they're 'trustworthy' (trust region methods)

\blacktriangleright Limit step size

▶ Sufficient conditions for convergence of Newton (under *strong* assumptions) are available.

Fixed Point Iteration

$$
\mathbf{x_0} = \langle \text{starting guess} \rangle
$$

$$
\mathbf{x}_{k+1} = \mathbf{g}(\mathbf{x}_k)
$$

$$
x^2 = \frac{\beta}{x} \text{ and } \frac{\beta}{x} = \frac{\beta}{x}
$$

When does this converge?

 $g\left(\frac{x^*}{x}+e_a\right) = g\left(\frac{x^*}{x}\right) + \frac{g}{g}\left(\frac{x^*}{x}\right) \cdot e_a + O\left(\frac{e_a}{x}\right)$
 $g\left(\frac{x}{x}\right) = g\left(x^* - g\right) = \frac{g}{g}\left(\frac{x^*}{x}\right) \cdot \frac{g}{e_a} + O\left(\frac{e_a}{x}\right)$

 $||e_{\alpha+1}|| \overset{n-n}{\underset{q}{\sim}} || \mathcal{J}_q(\tilde{x})|| \overset{=}{\underset{\sim}{\sim}} ||$ $||\psi_{\alpha}|_{\alpha}$ ($\frac{1}{2}||\psi_{\alpha}|_{\alpha}$) $||\psi_{\alpha}|_{\alpha}$ ($||\psi_{\alpha}|_{\alpha}$)

For all matrices $A \in \mathbb{C}^{n \times n}$ T_{0} all $\epsilon > 0$ there exists a watmix now $\|\cdot\|_A$ 50 that $\rho(A) \subseteq ||A||_4$ $\leq \rho(A)$ +2 So, a show par crivaion for FPI

Newton's Method

What does Newton's method look like in *n* dimensions?

$$
\int_{\mathbb{R}} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right) \approx \int_{\mathbb{R}} \left(\frac{\partial}{\partial x} \right) \cdot \vec{h} = \vec{O}
$$
\n
$$
\int_{\mathbb{R}} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \right) \cdot \vec{h} = -\int_{\mathbb{R}} \left(\frac{\partial}{\partial x} \right) \cdot \vec{h} = \int_{\mathbb{R}} \left(\frac{\
$$

Downsides of n-dim. Newton?

Demo: Newton's method in n dimensions [cleared]

Secant in *n* dimensions?

What would the secant method look like in n dimensions?

$$
\bigotimes_{n=1}^{\infty} (\overline{X}_{k+1} - \overline{X}_{n}) = \overline{f}(X_{n+1}) - \overline{f}(X_{n})
$$
\n
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 \\
0
$$

187

Numerically Testing Derivatives

Getting derivatives right is important. How can I test/debug them?