November 5, 2024 Announcements

Goals

Jax Review - Antomatic differentiation (AD) - Testly Jenivatives IP

Numerically Testing Derivatives

Getting derivatives right is important. How can I test/debug them?

 $\frac{p(x + hs) - p(x)}{h} - p(x) - p(x) = O(h)$ P(2+413/= P(2)+ 4]=(2) 3 + 0(62)

Outline

Introduction to Scientific Computing

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Introduction Methods for unconstrained opt. in one dimension Methods for unconstrained opt. in *n* dimensions Nonlinear Least Squares Constrained Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Optimization: Problem Statement

Have: Objective function $f : \mathbb{R}^n \to \mathbb{R}$ *Want:* Minimizer $\mathbf{x}^* \in \mathbb{R}^n$ so that

$$f(\boldsymbol{x}^*) = \min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $\boldsymbol{g}(\boldsymbol{x}) = 0$ and $\boldsymbol{h}(\boldsymbol{x}) \leq 0$.

- If g or h are present, this is constrained optimization.
 Otherwise unconstrained optimization.
- If f, g, h are linear, this is called linear programming. Otherwise nonlinear programming.

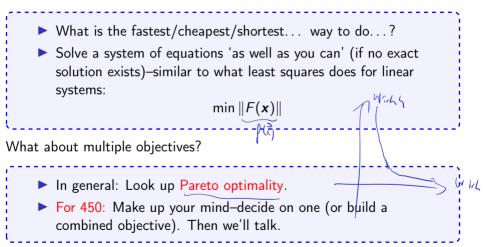
Optimization: Observations

Q: What if we are looking for a *maximizer* not a minimizer? Give some examples:

What about multiple objectives?

Optimization: Observations

Q: What if we are looking for a *maximizer* not a minimizer? Give some examples:



Existence/Uniqueness

Terminology: global minimum / local minimum

Under what conditions on f can we say something about existence/uniqueness?

If $f:S
ightarrow\mathbb{R}$ is continuous on a closed and bounded set $S\subseteq\mathbb{R}^n$, then

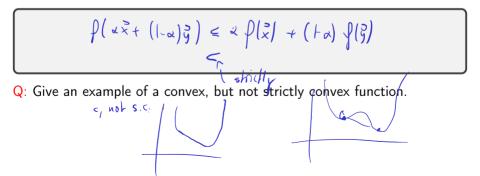
 $f: S \to \mathbb{R}$ is called *coercive* on $S \subseteq \mathbb{R}^n$ if

If f is coercive and continuous and S is closed, ...

Convexity

 $S \subseteq \mathbb{R}^n$ is called convex if for all $\pmb{x}, \pmb{y} \in S$ and all $0 \le \alpha \le 1$

 $f: S \to \mathbb{R}$ is called convex on $S \subseteq \mathbb{R}^n$ if for $x, y \in S$ and all $0 \le \alpha \le 1$



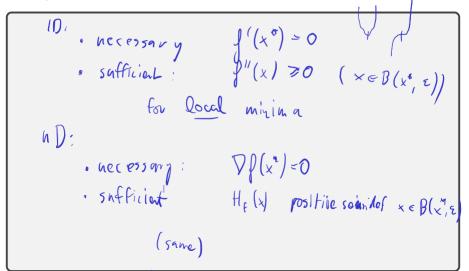
Convexity: Consequences

If f is convex, ...

If f is strictly convex, ...

Optimality Conditions

If we have found a candidate x^* for a minimum, how do we know it actually is one? Assume f is smooth, i.e. has all needed derivatives.

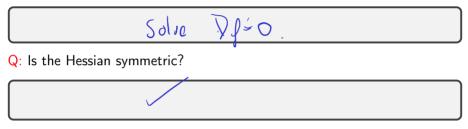


 $\int last chapter \\ f: \mathbb{R}^n \to \mathbb{R}^n$ P: R" > R $P(\vec{x}+\vec{h}) = f(\vec{x}) + \nabla f \cdot \vec{h} + \frac{1}{2} \vec{h} + h_{p} \vec{h}$ $H_{E} = \begin{pmatrix} \partial_{xx} P & \partial_{xy} \\ \partial_{yx} P & \ddots \end{pmatrix}$ Sihwan's thm: He symm, Ceijevector XT $H_{4} = \chi$

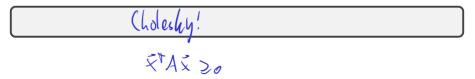
 $h^{\dagger} H_{\mu} h = h^{\intercal} \times D \times T h = \overline{T} D \overline{z}$ $\tilde{z} = \chi \tilde{h}$ \tilde{z}_{1}^{2}

Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.



Q: How can we practically test for positive definiteness?



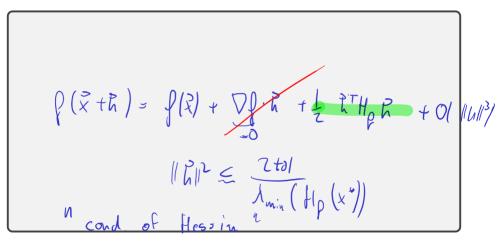
Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?

Suppose
$$(f(\bar{x}) - f(\bar{x})) \in dot$$
. $(x^* \text{ is the min})$
 $f(x^* t_1) = f(\bar{x}) + f'(x^*) + f''(x^*) + O(h^2)$
Ignore $O(h^2)$ term and solve for h :
 $f(\bar{x} - x^*) \in \sqrt{\frac{2}{p''(x^*)}}$
wide bowls bad

Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?



Unimodality

Would like a method like bisection, but for optimization. In general: No invariant that can be preserved. Need *extra assumption*.