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Numerically Testing Derivatives
Getting derivatives right is important. How can I test/debug them?
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Optimization: Problem Statement

Have: Objective function f : Rn → R
Want: Minimizer x∗ ∈ Rn so that

f (x∗) = min
x

f (x) subject to g(x) = 0 and h(x) ≤ 0.

▶ g(x) = 0 and h(x) ≤ 0 are called constraints.
They define the set of feasible points x ∈ S ⊆ Rn.

▶ If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

▶ If f , g , h are linear, this is called linear programming.
Otherwise nonlinear programming.
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Optimization: Observations
Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

What about multiple objectives?
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Optimization: Observations
Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

▶ What is the fastest/cheapest/shortest. . . way to do. . . ?
▶ Solve a system of equations ‘as well as you can’ (if no exact

solution exists)–similar to what least squares does for linear
systems:

min ∥F (x)∥

What about multiple objectives?

▶ In general: Look up Pareto optimality.
▶ For 450: Make up your mind–decide on one (or build a

combined objective). Then we’ll talk.
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Existence/Uniqueness
Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f : S → R is continuous on a closed and bounded set S ⊆ Rn, then

f : S → R is called coercive on S ⊆ Rn if

If f is coercive and continuous and S is closed, . . .
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Convexity

S ⊆ Rn is called convex if for all x , y ∈ S and all 0 ≤ α ≤ 1

f : S → R is called convex on S ⊆ Rn if for x , y ∈ S and all 0 ≤ α ≤ 1

Q: Give an example of a convex, but not strictly convex function.
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Convexity: Consequences

If f is convex, . . .

If f is strictly convex, . . .
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Optimality Conditions
If we have found a candidate x∗ for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.
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Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

Q: Is the Hessian symmetric?

Q: How can we practically test for positive definiteness?
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Sensitivity and Conditioning (1D)
How does optimization react to a slight perturbation of the minimum?
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Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?
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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.
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