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Numerically Testing Derivatives

Getting derivatives right is-important. How can | test/debug them?
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Outline

Optimization
Introduction
Methods for unconstrained opt. in one dimension
Methods for unconstrained opt. in n dimensions
Nonlinear Least Squares
Constrained Optimization
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Optimization: Problem Statement

Have: Objective function f : R” = R
Want: Minimizer x* € R" so that

f(x*) = minf(x) subjectto g(x)=0 and h(x)<O0.

» g(x) =0 and h(x) <0 are called constraints.
They define the set of feasible points x € S C R".

» If g or h are present, this is constrained optimization.
Otherwise unconstrained optimization.

> If f, g, h are linear, this is called linear programming.
Otherwise nonlinear programming.
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Optimization: Observations

Q: What if we are looking for a maximizer not a minimizer?
Give some examples:
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Optimization: Observations

Q: What if we are looking for a maximizer not a minimizer?
Give some examples:

» What is the fastest/cheapest/shortest. .. way to do...?

» Solve a system of equations ‘as well as you can’ (if no exact
solution exists)—similar to what least squares does for linear
systems:

U U U Uy

min | F(0)| i
............................... JH?)"""""
What about multiple objectives?
E » In general: Look up Pareto optimality. LE‘
: » For 450: Make up yomon one (or bfi E
i combined objective). Then we'll talk. !
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Existence/Uniqueness

Terminology: global minimum / local minimum

Under what conditions on f can we say something about
existence/uniqueness?
If f: S — R is continuous on a closed and bounded set S C R”, then
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f:S — Ris called coercive on S C R" if

L ;P(*} ~ o0

(bell ~ 0

If f is coercive and continuous and S is closed, ...
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Convexity @

S CR"is called convex if forall x,ye Sandall 0 < a <1

<% t (I-)§ €S

f:S—Riscalled convexon SCR"ifforx,yc Sandall0 < a <1
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Q: Give an example of a convex, but not skrictly onvex functiof.
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Convexity: Consequences w

If fis convex, ...
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If f is strictly convex, ...
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Optimality Conditions
If we have found a candidate x* for a minimum, how do we know it
actually is one? Assume f is smooth, i.e. has all needed derivatives.
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Optimization: Observations

Q: Come up with a hypothetical approach for finding minima.

Solue V:P-"O.

Q: Is the Hessian symmetric?

S

Q: How can we practically test for positive definiteness?
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Sensitivity and Conditioning (1D)

How does optimization react to a slight perturbation of the minimum?
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Sensitivity and Conditioning (nD)

How does optimization react to a slight perturbation of the minimum?
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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.
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