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Unimodality

Would like a method like bisection, but for optimization.
In general: No invariant that can be preserved.
Need extra assumption.
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Golden Section Search
Suppose we have an interval with f unimodal:

Would like to maintain unimodality.
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Golden Section Search: Efficiency
Where to put x1, x2?

Convergence rate?
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Newton’s Method
Reuse the Taylor approximation idea, but for optimization.

Demo: Newton’s Method in 1D [cleared]
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Steepest Descent/Gradient Descent
Given a scalar function f : Rn → R at a point x , which way is down?

Demo: Steepest Descent [cleared] (Part 1) 204



Steepest Descent: Convergence
Consider quadratic model problem:

f (x) =
1
2
xTAx + cTx

where A is SPD. (A good model of f near a minimum.)
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Steepest Descent: Convergence
Consider quadratic model problem:

f (x) =
1
2
xTAx + cTx

where A is SPD. (A good model of f near a minimum.)

Define error ek = xk − x∗. Then can show:

∥ek+1∥A =
q

eT
k+1Aek+1 =

σmax(A)− σmin(A)

σmax(A) + σmin(A)
∥ek∥A

where ∥x∥A =
√

xTAx . → confirms linear convergence.

Convergence constant related to conditioning:

σmax(A)− σmin(A)

σmax(A) + σmin(A)
=

κ(A)− 1
κ(A) + 1

.
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Hacking Steepest Descent for Better Convergence
Extrapolation methods:

Heavy ball method:

Demo: Steepest Descent [cleared] (Part 2)
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Hacking Steepest Descent for Better Convergence
Extrapolation methods:

Look back a step, maintain ’momentum’.

xk+1 = xk − αk∇f (xk) + βk(xk − xk−1)

Heavy ball method:

For specific constant αk = α and βk = β, can attain:

||ek+1||A =

p
κ(A)− 1p
κ(A) + 1

||ek ||A

Demo: Steepest Descent [cleared] (Part 2)
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Optimization in Machine Learning
What is stochastic gradient descent (SGD)?
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Optimization in Machine Learning
What is stochastic gradient descent (SGD)?

Common in ML: Objective functions of the form

f (x) =
1
n

nX

i=1

fi (x),

where each fi comes from an observation (“data point”) in a (training)
data set. Then “batch” (i.e. normal) gradient descent is

xk+1 = xk − α
1
n

nX

i=1

∇fi (xk).

Stochastic GD uses one (or few, “minibatch”) observation at a time:

xk+1 = xk − α∇fϕ(k)(xk).

ADAM optimizer: GD with exp. moving avgs. of ∇ and its square.
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Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

Demo: Conjugate Gradient Method [cleared]
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Conjugate Gradient Methods

Can we optimize in the space spanned by the last two step directions?

(αk ,βk) = argminαk ,βk

�
f
�
xk − αk∇f (xk) + βk(xk − xk−1)

��

▶ Will see in more detail later (for solving linear systems)
▶ Provably optimal first-order method for the quadratic model

problem
▶ Turns out to be closely related to Lanczos (A-orthogonal search

directions)

Demo: Conjugate Gradient Method [cleared]
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Nelder-Mead Method

Idea:

Demo: Nelder-Mead Method [cleared]
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Newton’s method (n D)

What does Newton’s method look like in n dimensions?
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Newton’s method (n D): Observations

Drawbacks?

Demo: Newton’s Method in n dimensions [cleared]
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Newton’s method (n D): Observations

Drawbacks?

▶ Need second (!) derivatives
(addressed by Conjugate Gradients, later in the class)

▶ local convergence
▶ Works poorly when Hf is nearly indefinite

Demo: Newton’s Method in n dimensions [cleared]
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Quasi-Newton Methods
Secant/Broyden-type ideas carry over to optimization. How?
Come up with a way to update to update the approximate Hessian.

BFGS: Secant-type method, similar to Broyden:

Bk+1 = Bk +
ykyT

k

yT
k sk

− BksksTk Bk

sTk Bksk
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