

Review- Mondonials / eya ispaced
- conditioning and - Lebesghe constant Λ = un $\frac{||p_{n-1}||_{\infty}}{||q_{n-1}||_{\infty}}$ \leftarrow function in f work

Chebyshev Interpolation

$$
\bar{I}_{k}(x):cos(k cos'(y))
$$

What is the Vandermonde matrix for Chebyshev polynomials?

$$
x_i = \cos\left(\frac{i}{k}\pi\right) \qquad (i = 0, ..., k)
$$
\n
$$
V_{ij} = T_j(x_i) = \cos\left(j\cos\left(\frac{i\pi}{k}\right)\right)
$$
\n
$$
= \cos\left(\frac{i\pi}{k}\right)
$$
\n
$$
= \cos\left(\frac{i\pi}{k}\right)
$$
\n
$$
V_d = V_g
$$
\n
$$
V_g = V_g
$$
\n
$$
V_g
$$

Chebyshev Nodes

Might also consider roots (instead of extrema) of T_k :

$$
x_i = \cos\left(\frac{2i-1}{2k}\pi\right) \quad (i=1\ldots,k).
$$

Vandermonde for these (with T_k) can be applied in $O(N \log N)$ time, too.

Edge-clustering seemed like a good thing in interpolation nodes. Do these do that?

Demo: Chebyshev Interpolation [cleared] (Part I-IV)

Chebyshev Interpolation: Summary

- \triangleright Chebyshev interpolation is fast and works extremely well
- ▶ http://www.chebfun.org/ and: ATAP
- \blacktriangleright In 1D, they're a very good answer to the interpolation question
- ▶ But sometimes a piecewise approximation (with a specifiable level of smoothness) is more suited to the application

Truncation Error in Interpolation

 $10-1$

If f is n times continuously differentiable on a closed interval I and $p_{n-1}(x)$ is a polynomial of degree at most p^+ that interpolates f at n distinct points $\{x_i\}$ $(i = 1, ..., n)$ in that interval, then for each x in the interval there exists ξ in that interval such that

$$
\ell(x) = p_{n-1}(x) = \frac{\left(f^{(n)}(\xi(x))\right)}{n!}(x-x_1)(x-x_2)\cdots(x-x_n)}
$$
\n
$$
\ell(x) = \sqrt{1-x_1(x)}
$$
\n
$$
\ell(x) = \ell(x) - p_{n-1}(x)
$$
\n
$$
\ell(x) = \frac{\ell(x)}{\sqrt{x}} \quad \text{with} \quad \mathbf{W}(\xi) = \prod_{i=1}^{n} (x-x_i)
$$

Truncation Error in Interpolation: cont'd.

$$
Y_{x}(t) = R(t) - \frac{R(x)}{W(x)}W(t) \text{ where } W(t) = \prod_{i=1}^{n} (t - x_{i})
$$
\n
\n• $\sqrt[n]{x}$ h_{13} $n+| \text{ roob } x$ $x_{1} \dots x_{n-1} \times$ \n
\n• $\sqrt[n]{x}$ h_{24} $n \text{ roob } x$ \n
\n• $\sqrt[n]{x}$ h_{35} $n \text{ roob } x$ \n
\n• $\sqrt[n]{x}$ h_{36} $n \text{ roob } x$ \n
\n• $\sqrt[n]{x}$ h_{37} $n \text{ roob } x$ \n
\n• $\sqrt[n]{x}$ h_{38} $n \text{ roob } x$ \n
\n• $\sqrt[n]{x}$ h_{39} h_{30} \n
\n• $\sqrt[n]{x}$ h_{30} h_{31} \n
\n• $\sqrt[n]{x}$ h_{30} \n
\n• $\sqrt[n]{x}$ h_{30} \n
\n• $\sqrt[n]{x}$ h_{30} \n
\n• $\sqrt[n]{x}$ h_{30} \n
\n• $\sqrt[n]{x}$ h_{31} \n
\n• $\sqrt[n]{x}$ h_{30} \n
\n• $\sqrt[n]{x}$ h_{31} \n
\n• $\sqrt[n]{x}$ \n
\n• $\$

 $\tilde{\mathcal{A}}$

 $\frac{1}{2}$

Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev interpolation?

 Mx nicely bonded for Cheeb hodg Demo: Chebyshev Interpolation [cleared] (Part V)

Error Result: Connection to Chebyshev

What is the connection between the error result and Chebyshev interpolation?

- \blacktriangleright The error bound suggests choosing the interpolation nodes such that the product $\left| \prod_{i=1}^{n}(x - x_i) \right|$ is as small as possible. The Chebyshev nodes achieve this.
- ▶ If nodes are edge-clustered, $\prod_{i=1}^{n}(x x_i)$ clamps down the (otherwise quickly-growing) error there.
- ▶ Confusing: Chebyshev approximating polynomial (or "polynomial best-approximation"). Not the Chebyshev interpolant.

 \triangleright Chebyshev nodes also do not minimize the Lebesgue constant.

Demo: Chebyshev Interpolation [cleared] (Part V)

Error Result: Simplified Form

Boil the error result down to a simpler form.

 \mathcal{L} = (a, 4) t Assume $x_1 < ... < x_n$ Assume $| \hat{\beta}^{(4)}(x) | \in M$ for $x \in \mathcal{T}$. \cdot Let $h = |I|$ \Rightarrow $|x-x_i| \leq 4$ $\max_{x\in T} |f(x)-\rho_{n-1}(x)| \leq C \cdot 10 \cdot 10$ $u - dh$ order Convergence

Demo: Interpolation Error [cleared]

Demo: Jump with Chebyshev Nodes [cleared]

Going piecewise: Simplest Case

Construct a piecewise linear interpolant at four points.

x_0, y_0	x_1, y_1	x_2, y_2	x_3, y_3			
	$f_1 = a_1 x + b_1$		$f_2 = a_2 x + b_2$		$f_3 = a_3 x + b_3$	
	2 unk.		2 unk.		2 unk.	
	$f_1(x_0) = y_0$		$f_2(x_1) = y_1$		$f_3(x_2) = y_2$	
	$f_1(x_1) = y_1$		$f_2(x_2) = y_2$		$f_3(x_3) = y_3$	
	2 eqn.		2 eqn.			

Why three intervals?