November 21, 2024 **Announcements**

Goals

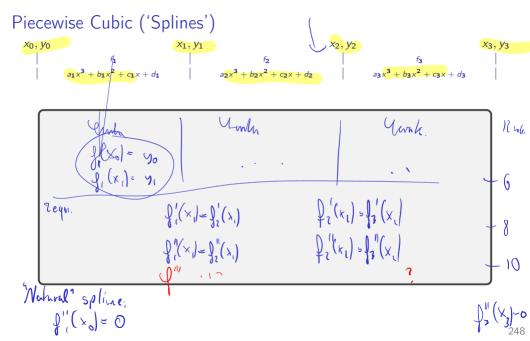
- processing intemp. - integration

Review

Going piecewise: Simplest Case

Construct a piecewise linear interpolant at four points.

Why three intervals?



Piecewise Cubic ('Splines'): Accounting

Outline

Numerical Integration and Differentiation Numerical Integration Quadrature Methods Accuracy and Stability Gaussian Quadrature Composite Quadrature Numerical Differentiation Richardson Extrapolation

Numerical Integration: About the Problem What is numerical integration? (Or quadrature?) What about existence and uniqueness?

Numerical Integration: About the Problem

What is numerical integration? (Or quadrature?)

Given a, b, f, approximate

$$\int_a^b f(x) \mathrm{d}x.$$

What about existence and uniqueness?

- ► Answer exists e.g. if *f* is *integrable* in the Riemann or Lebesgue senses.
- Answer is unique if f is e.g. piecewise continuous and bounded. (this also implies existence)

Conditioning

Derive the (absolute) condition number for numerical integration.

$$\int_{a}^{b} \int_{a}^{b} dx - \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} dx$$

$$= \left| \int_{a}^{b} \left(\int_{a}^{b} - \int_{a}^{b} + e \right) (x) dx \right| = \left| \int_{a}^{b} e(x) dx \right| \leq \int_{a}^{b} e(x) dx$$

$$\left| \int_{a}^{b} \int_{a}^{b} dx - \int_{a}^{b} \int_{a}^{b} e(x) dx \right| = \left| \int_{a}^{b} e(x) dx \right| \leq \int_{a}^{b} e(x) dx$$

$$\left| \int_{a}^{b} \int_{a}^{b} dx - \int_{a}^{b} \int_{a}^{b} e(x) dx \right| = \left| \int_{a}^{b} e(x) dx \right| \leq \int_{a}^{b} e(x) dx$$

252

Interpolatory Quadrature: Examples

Fix
$$(x_i)$$
. Find $p_{n-1} > d$. $p_{n-1}(x_i) > p(x_i)$

$$p_{n-1}(x) = (y_i) l_i(x)$$

$$l_i(x_i) = \begin{cases} 1 & i=j \\ 0 & \text{otherwise}, \end{cases} \quad (\text{Lagrange})$$

$$\int_{a}^{b} (u) dx \sim \int_{a}^{b} (x_i) l_i(x) dx$$

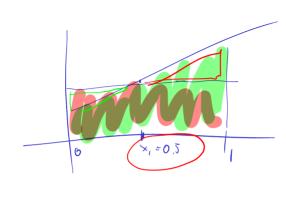
$$= \int_{a=1}^{b} (x_i) \int_{a=1}^{b} (x_i) dx$$

Interpolatory Quadrature: Computing Weights

How do the weights in interpolatory quadrature get computed?

$$b^{2} = \int_{a}^{b} dx - \int_{a}^{b} dx = \int_{a}^{b} u dx =$$

Demo: Newton-Cotes weight finder [cleared]



Examples and Exactness

To what polynomial degree are the following rules exact?

Midpoint rule
$$(b-a)f(\frac{a+b}{2})$$

Trapezoidal rule
$$\frac{b-a}{2}(f(a)+f(b))$$

Simpson's rule
$$\frac{b-a}{6}\left(f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right)$$

Interpolatory Quadrature: Accuracy

Let p_{n-1} be an interpolant of f at nodes x_1, \ldots, x_n (of degree n-1) Recall

$$\sum_{i} \omega_{i} f(x_{i}) = \int_{a}^{b} p_{n-1}(x) dx.$$

What can you say about the accuracy of the method?

Quadrature: Overview of Rules							
		n	Deg.	Ex.Int.Deg.	Intp.Ord.	Quad.Ord.	Quad.Ord.
				(w/odd)		(regular)	(w/odd)
			n-1	$(n-1)+1_{odd}$	n	n+1	$(n+1)+1_{odd}$
	Midp.	1	0	1	1	2	3
	Trapz.	2	1	1	2	3	3
	Simps.	3	2	3	3	4	5
	S. 3/8	4	3	3	4	5	5

- n: number of points
- ▶ "Deg.": Degree of polynomial used in interpolation (= n 1)
- "Ex.Int.Deg.": Polynomials of up to (and including) this degree actually get integrated exactly. (including the odd-order bump)
- "Intp.Ord.": Order of Accuracy of Interpolation: $O(h^n)$
- "Quad.Ord. (regular)": Order of accuracy for quadrature predicted by the error result above: $O(h^{n+1})$
- "Quad.Ord. (w/odd):" Actual order of accuracy for quadrature given 'bonus' degrees for rules with odd point count

Observation: Quadrature gets (at least) 'one order higher' than interpolation-even more for odd-order rules. (i.e. more accurate)

Interpolatory Quadrature: Stability

Let p_{n-1} be an interpolant of f at nodes x_1, \ldots, x_n (of degree n-1) Recall

$$\sum_{i} \omega_{i} f(x_{i}) = \int_{a}^{b} \rho_{n-1}(x) \mathrm{d}x$$

What can you say about the stability of this method?

$$|\hat{C}(x) - f(x) \cdot e(x)|$$

$$|\hat{C}(x)| \cdot |\hat{C}(x)| \cdot |\hat$$

So, what quadrature weights make for bad stability bounds?

About Newton-Cotes

What's not to like about Newton-Cotes quadrature? Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)							

About Newton-Cotes

What's not to like about Newton-Cotes quadrature?

Demo: Newton-Cotes weight finder [cleared] (again, with many nodes)

In fact, Newton-Cotes must have at least one negative weight as soon as $n \ge 11$.

More drawbacks:

- ► All the fun of high-order interpolation with monomials and equispaced nodes (i.e. convergence not guaranteed)
- Weights possibly non-negative (→stability issues)
- Coefficients determined by (possibly ill-conditioned)
 Vandermonde matrix
- ▶ Thus hard to extend to arbitrary number of points.

Gaussian Quadrature

So far: nodes chosen from outside.

Can we gain something if we let the quadrature rule choose the nodes,

too? Hope: More design freedom \rightarrow Exact to higher degree.

In unknowns

The polynomials integrated

exactly

Demo: Gaussian quadrature weight finder [cleared]

Composite Quadrature

High-order polynomial interpolation requires a high degree of smoothness of the function.

Idea: Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement.

