HWI

 $\begin{pmatrix} 2_{1} n_{y} \end{pmatrix} \begin{pmatrix} 2_{1} n_{y} \end{pmatrix} \begin{pmatrix} 2_{1} n_{y} \end{pmatrix} \\ \begin{pmatrix} 2_{1} n_{x_{1}} ? \end{pmatrix} \begin{pmatrix} 2_{1} n_{y} \end{pmatrix} \\ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$ all dist voctors have shype;

Recap: Norms

What's a norm?

Define norm.

· Definiteness · scally · tringle imp

Norms: Examples

Examples of norms?

 $\underline{\text{Demo: Vector Norms}} \underbrace{ [\text{cleared}]}_{\substack{\gamma^{(0,1)} \\ (1+1) \\ (1$

18

Norms: Which one?

Does the choice of norm really matter much?

Suppose you have
$$\|\cdot\|$$
, $\|\cdot\|_{*}$.
In Finite - dla, there exist a, $\beta > 0$ so that
 $\propto \|\vec{x}\| \in \|\vec{x}\|_{*} \in \beta \|\vec{x}\|$ ($\vec{x} \in \|\vec{x}'|$)

In these notes: If we write $\|\cdot\|$ without any specifics, then the statement is true for any norm. If a specific norm is needed, the notation will indicate that.

Norms and Errors

If we're computing a vector result, the error is a vector. That's not a very useful answer to 'how big is the error'. What can we do?

Forward/Backward Error

Suppose want to compute y = f(x), but approximate $\hat{y} = \hat{f}(x)$.

What are the forward error and the backward error?

Forward/Backward Error: Example

Suppose you wanted $y = \sqrt{2}$ and got $\hat{y} = 1.4$. What's the (magnitude of) the forward error?

Forward/Backward Error: Example

Suppose you wanted $y = \sqrt{2}$ and got $\hat{y} = 1.4$. What's the (magnitude of) the backward error?

Forward/Backward Error: Observations

What do you observe about the relative magnitude of the relative errors?

,	
1	1
1	1
1 Contraction of the second	
1 Contraction of the second	
1	
	/

Forward/Backward Error: Observations

What do you observe about the relative magnitude of the relative errors?

▶ In this case: Got smaller, i.e. variation *damped out*.

- ▶ Typically: Not that lucky: Input error *amplified*.
- If backward error is smaller than the input error: result "as good as possible".

This amplification factor seems worth studying in more detail.

Sensitivity and Conditioning

Consider a more general setting: An input x and its perturbation \hat{x} .

Absolute Condition Number

Can you also define an *absolute* condition number?

Absolute Condition Number

Can you also define an absolute condition number?

Certainly: $\kappa_{abs} = \max_{x,\hat{x}} \frac{|f(x) - f(\hat{x})|}{|x - \hat{x}|}$ But: less commonly used than relative, because we *typically* care about relative error. When not specified: Assume condition number means *relative*.

Interpreting a Condition Number

What does it mean for condition numbers to be small/large?

Relate the (relative) condition number back to the setting of (relative) backward error.

