September 17, 2024 Announcements

Goals

Review

•
$$A = U \in V^T$$

orth $\int \int orbh$
orth $\int orbh$
 $\int orbh$
 $\int orbh$
 $\int orbh$
 $\int orbh$
 $\int \int orbh$
 $\int \partial rhu \leq 20$
 $\partial rhu = 20$

Computing the 2-Norm

Using the SVD of A, identify the 2-norm.

•
$$\|A\|_{2} = \| |A \subseteq V^{T}|_{2} = \|C\|_{2}$$

= σ_{1}

Express the matrix condition number $cond_2(A)$ in terms of the SVD:

$$K_{2}(A) = \|A\|_{2} \|A^{*}\|_{2} = h \leq \|_{2} \| \leq^{-1} \|_{2} = \sigma_{1} / \sigma_{2}$$

$$m = \| \begin{pmatrix} d_{1} \\ \vdots \\ d_{n} \end{pmatrix} \|_{2}$$

Not a matrix norm: Frobenius

The 2-norm is very costly to compute. Can we make something simpler?

What about its properties?

Not a matrix norm: Frobenius

The 2-norm is very costly to compute. Can we make something simpler?

- definiteness
- scaling
- triangle inequality
- submultiplicativity (proof via Cauchy-Schwarz)

Frobenius Norm: Properties

$\|QA\|_{\downarrow} = \|A\|_{\downarrow}$

Is the Frobenius norm induced by any vector norm?

How does it relate to the SVD?

$$\|A\|_{2} = \|U \in V^{T}\|_{2} = \|E\|_{2} = \sqrt{C\sigma_{1}^{2}}$$

Solving Systems: Simple cases

Solve $D\mathbf{x} = \mathbf{b}$ if D is diagonal. (Computational cost?)

 $x_{i} = b_{i}/d_{ii} \qquad ($

h

ι

Solve $Q\mathbf{x} = \mathbf{b}$ if Q is orthogonal. (Computational cost?)

Given SVD $A = U\Sigma V^T$, solve $A\mathbf{x} = \mathbf{b}$. (Computational cost?)

$$U(V^{T}) = G$$

$$EV^{T} - U^{T}G$$

$$V^{T} = C^{T} U^{T}B$$

$$R = V C^{T} U^{T}$$

Solving Systems: Triangular matrices Solve

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{33} & a_{34} \\ & & & & a_{44} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

.

Demo: Coding back-substitution [cleared] What about non-triangular matrices?

Gauss elim.

Gaussian Elimination

Demo: Vanilla Gaussian Elimination [cleared] What do we get by doing Gaussian Elimination?

How is that different from being upper triangular?

What if we do not just eliminate downward but also upward?

RREF

LU Factorization

Solving $A\mathbf{x} = \mathbf{b}$

Does LU help solve $A\mathbf{x} = \mathbf{b}$?

 $\hat{y} = 0$

Determining an LU factorization

Computational Cost

What is the computational cost of multiplying two $n \times n$ matrices?

•
$$u_{11} = a_{11}, u_{12}^T = a_{12}^T.$$

• $\ell_{21} = a_{21}/u_{11}.$
• $L_{22}U_{22} = A_{22} - \ell_{21}u_{12}^T$

What is the computational cost of carrying out LU factorization on an $n \times n$ matrix?

Demo: Complexity of Mat-Mat multiplication and 💯 [cleared]

LU: Failure Cases?

Is LU/Gaussian Elimination bulletproof?

Saving the LU Factorization

What can be done to get something like an LU factorization?

Paihiali PA=LU pilohy **Demo:** LU Factorization with Partial Pivoting [cleared]

Saving the LU Factorization

What can be done to get something like an LU factorization?

Idea from linear algebra class: In Gaussian elimination, simply swap rows, equivalent linear system.

- Good idea: Swap rows if there's a zero in the way
- Even better idea: Find the largest entry (by absolute value), swap it to the top row.

The entry we divide by is called the *pivot*.

- Swapping rows to get a bigger pivot is called partial pivoting.
- Swapping rows and columns to get an even bigger pivot is called complete pivoting. (downside: additional O(n²) cost per step to find the pivot!)

Demo: LU Factorization with Partial Pivoting [cleared]