

$$\times \forall \times d = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $X = \begin{pmatrix} \vec{v}_i & \vec{v}_j \\ \vec{v}_i & \vec{v}_j \end{pmatrix}$

 $\vec{X} = \sigma_1 \vec{v}_1 + \sigma_2 \vec{v}_2$ $A_{\vec{X}}^2 = \sigma_1 \lambda_1 \vec{v}_1 + \sigma_2 \lambda_2 \vec{v}_2$

Power Iteration

Demo: Motivating Power Iteration [cleared] Let $A \in \mathbb{R}^{n \times n}$ and $A\mathbf{v}_j = \lambda_j \mathbf{v}_j$ $(j \in \{1, 2, ..., n\})$ and $|\lambda_1| \ge |\lambda_2| > \cdots > |\lambda_n|$. Pick some \mathbf{x}_0 , consider $\mathbf{x}_{i+1} = A\mathbf{x}_i$ $(i \in \{0, ...\})$. Called Power Iteration.

Convergence of Power Iteration: Notation

- $\lambda_{\max}(A)$: biggest eigenvalue by magnitude
- ► $\lambda_{\max 2}(A)$: second-biggest eigenvalue by magnitude.
- $\lambda_{\min 2}(A)$: second-smallest eigenvalue by magnitude
- $\lambda_{\min}(A)$: smallest eigenvalue by magnitude

(Not well-defined if there are multiple λ with the same magnitudes. Assume that's not the case.)

Power Iteration: Shift

How does a shift $(A - \sigma I)$ change power iteration?

Power Iteration: Shift

How does a shift $(A - \sigma I)$ change power iteration?

- Converges to eigenvector for $\lambda_{\max}(A \sigma I)$ with convergence factor $\left| \frac{\lambda_{\max} 2(A \sigma I)}{\lambda_{\max}(A \sigma I)} \right|$.
- Can help guide convergence to eigenvalues 'on boundary' of spectrum.

Power Iteration: Inversion

How does inversion (A^{-1}) change power iteration?

Power Iteration: Inversion

How does inversion (A^{-1}) change power iteration?

► Converges to eigenvector for λ_{max}(A⁻¹) = 1/λ_{min}(A) with convergence factor

$$\left|\frac{\lambda_{\max 2}(A^{-1})}{\lambda_{\max}(A^{-1})}\right| = \left|\frac{1/\lambda_{\min 2}(A)}{1/\lambda_{\min}(A)}\right| = \left|\frac{\lambda_{\min}(A)}{\lambda_{\min 2}(A)}\right|.$$

Guide convergence to smallest eigenvalues.

Power Iteration: Shift and Inversion

How does shift-invert $((A - \sigma I)^{-1})$ change power iteration?

Power Iteration: Shift and Inversion

How does shift-invert $((A - \sigma I)^{-1})$ change power iteration?

What could go wrong with power iteration?

What about Eigenvalues?

Power Iteration generates eigenvectors. $A \times = -5 \times \frac{||A \times ||}{||X||}$ $A \times = (-5 + 3i) \stackrel{?}{\sim} \frac{||A \times ||}{||X||}$

eigenvalues?

Demo: Power Iteration and its Variants [cleared]

Schur form: Motivation

For finding multiple eigenvalues, want factorization that allows access to all eigenvalues and eigenvectors.

Suggestions?