Stability \Rightarrow accuracy?

\Rightarrow "backward stable"
measure output perturbation
to the true answer

UFL?

\Rightarrow smallest normal (not subnormal)
number.
Floating Point and Rounding Error

What is the relative error produced by working with floating point numbers?

- What is smallest floating point number > 1? Assume 4 bits in the significand.

\[(1.0001) \cdot 2^{0}\]

- What’s the smallest FP number > 1024 in that same system?

\[(1.0001) \cdot 2^{10}\]

- Can we give that number a name?

machine precision \(\varepsilon_{\text{mach}}\)

\[\text{for } (1 + \varepsilon_{\text{mach}}) > 1\]

- What does this say about the relative error incurred in floating point calculations?

\[(1.0000) \cdot 2^{-53}\]

- What’s that same number for double-precision floating point? (52 bits in the significand)

\[2^{-53} \text{ or } 2^{-52} \text{ (dep. on rounding)}\]
\[f(l(a+b)) = \tilde{x} \quad a+b = x \]

\[\frac{1}{|x|} \left| \tilde{x} - x \right| = \frac{|x(1+\varepsilon_{\text{mach}}) - x|}{|x|} = \varepsilon_{\text{mach}} \]

Rel. error from FP rounding.
Demo: Floating Point and the Harmonic Series
Implementing Arithmetic

- How is floating point addition implemented?
 Consider adding $a = (1.101)_2 \cdot 2^1$ and $b = (1.001)_2 \cdot 2^{-1}$ in a system with three bits in the significand.

\[
\begin{align*}
 a &= (1.101)_2 \cdot 2^1 \\
 b &= (0.01001)_2 \\
 \hline
 c &= (1.11101)_2 \cdot 2^1
\end{align*}
\]
Problems with FP Addition

- What happens if you subtract two numbers of very similar magnitude?
 As an example, consider \(a = (1.1011)_2 \cdot 2^0 \) and \(b = (1.1010)_2 \cdot 2^0 \).

\[
\begin{align*}
\rightarrow & \quad a = (1.1011)_2 \cdot 2^0 \\
\rightarrow & \quad b = (1.1010)_2 \cdot 2^0 \\
\hline
a - b & = 0.0001 \cdot 2^{-4}
\end{align*}
\]
Demo: Catastrophic Cancellation
2 Systems of Linear Equations
2.1 Theory: Conditioning
Solving a Linear System

Given:

- \(m \times n\) matrix \(A\)
- \(m\)-vector \(b\)

○ What are we looking for here, and when are we allowed to ask the question?

 - If \(b \in \text{span}(\text{columns}(A))\) → even if the answer is not unique
 - For unique answer, need \(A\) to be invertible.
Matrix Norms

- What norms would we apply to matrices?

\[\| A \| : \text{max} \| A \times \| \| \times \| \|_{\| = 1} \]

\[\| A \| \leq \| A \| \cdot \| x \| \]

"submultiplicativity"

Given \(\| v \| \) - a vector norm

\(\| A \| : \text{max} \| A \times \| \| \times \| \|_{\| = 1} \) \(-\) matrix norm
If you compute the norm of a \(nx1 \) matrix, you obtain the vector norm of that column vector.

\[
\| \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \|_1 = |x_1| + |x_2| + \cdots + |x_n|
\]

\[
\| A \cdot \left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \right) \|_1 = \| \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \|_1
\]

\[
\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
\]

If you compute the norm of a \(nx1 \) matrix, you obtain the vector norm of that column vector.

\[
\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{... more subtle.}
\]

\[
\| x \| = 1
\]
\[\|A\|_1 = \max_{\text{col} j} \sum_{\text{row} i} |A_{ij}| \]

\[\|A\|_{\infty} = \max_{\text{row} i} \sum_{\text{col} j} |A_{ij}| \]
Demo: Matrix norms

In-class activity: Matrix norms