Rayleigh Quotient Iteration

- Describe inverse iteration.
 \[(A^{-1})^k x_0 \]
- Describe Rayleigh Quotient Iteration.
 \[\frac{\dot{x}^T A x}{\dot{x}^T x} \]
Demo: Power Iteration and its Variants
Computing Multiple Eigenvalues

- All Power Iteration Methods compute one eigenvalue at a time. What if I want all eigenvalues?

 - Suppose I know λ so that $Ax = \lambda x$

 $A = Q \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} Q^T$

 \Rightarrow Deflation

 - Power it w/ multiple vectors
Simultaneous Iteration

- What happens if we carry out power iteration on multiple vectors simultaneously?

\[X_0 \in \mathbb{R}^{n \times p} \]

\[X_{k+1} = AX_k \]

- Drawbacks:
 - \(p \) times same answer (eigvec for largest ev.)
 - Expensive
 - Ill-conditioned
Orthogonal Iteration

\[X_0 \in \mathbb{R}^{n \times p} \]

\[Q_k \mathbf{e}_k = X_k \]

\[X_{\text{new}} = A Q_k \]

\[Q_0 \mathbf{e}_0 = X_0 \]

\[x_1 = A Q_0 \Rightarrow A = Q_1 \mathbf{e}_1 \mathbf{e}_1^T \]

\[Q_1 \mathbf{e}_1 = X_1 \]

\[x_2 = A Q_1 \]

\[Q_n \mathbf{e}_n = X_n \Rightarrow A = Q_n \mathbf{e}_n \mathbf{e}_n^T \]

\[X_n = A Q_n \]

\[A = Q \begin{pmatrix} \sqrt{n} \end{pmatrix} Q^T \]

\[A \approx Q_n \mathbf{e}_n \mathbf{e}_n^T \]

\[x_2 = Q_n^T A Q_n \approx \mathbf{e}_n \]

\(\rho < n \) starting vectors

- expensive

- slow/linear convergence
Demo: Orthogonal Iteration
In-class activity: Eigenvalue Iterations
QR Iteration/QR Algorithm

Orthogonal iteration:
\[X_0 = A \]
\[Q_k R_k = X_k \]
\[X_{k+1} = A Q_k \]

Tracing through reveals:
- \(\hat{X}_k = \bar{X}_{k+1} \)
- \(Q_0 = \bar{Q}_0 \)
 \[Q_1 = \bar{Q}_0 \bar{Q}_1 \]
 \[Q_k = \bar{Q}_0 \bar{Q}_1 \ldots \bar{Q}_k \]

Orthogonal iteration showed: \(\hat{X}_k = \bar{X}_{k+1} \) converge. Also:

\[\bar{X}_{k+1} = \bar{R}_k \bar{Q}_k = \bar{Q}_k^T \bar{X}_k \bar{Q}_k, \]

so the \(\bar{X}_k \) are all similar → all have the same eigenvalues.

→ QR iteration produces Schur form.
QR Iteration: Incorporating a Shift

- How can we accelerate convergence of QR iteration using shifts?

\[
\tilde{X}_0 = A \\
\tilde{Q}_k \tilde{R}_k = \tilde{X}_n - \sigma_k I \Rightarrow \tilde{R}_n = \tilde{Q}_n^\dagger [\tilde{X}_n - \sigma_k I] \\
\tilde{X}_{n+1} = \tilde{R}_n \tilde{Q}_n + \sigma_n I \\
\tilde{X}_{n+1} = \tilde{R}_n \tilde{Q}_n + \sigma_n I = \tilde{Q}_n^\dagger [\tilde{X}_n - \sigma_k I] \tilde{Q}_n + \sigma_n I \\
= \tilde{Q}_n^\dagger \tilde{X}_n \tilde{Q}_n - \sigma_k I \tilde{Q}_n^\dagger + \sigma_n I \\
= \tilde{Q}_n^\dagger \tilde{X}_n \tilde{Q}_n - \sigma_k I + \sigma_n I
\]

1. Pickings \(\sigma_k \approx (\tilde{X}_k)^{mn} \)

2. Pick two eigenvalues \(\Box \) in the BR of \(\tilde{X}_k \)
\[A x = \lambda x \]

\[(A - \lambda I) x = 0 \]
QR Iteration: Computational Expense

- A full QR factorization at each iteration costs $O(n^3)$—can we make that cheaper?
4.4 Krylov Space Methods