Examples and Exactness

- To what polynomial degree are the following rules exact?

 Midpoint rule
 \[(b - a)f\left(\frac{a+b}{2}\right)\]

 Trapezoidal rule
 \[\frac{b-a}{2}(f(a) + f(b))\]

 Simpson’s rule
 \[\frac{b-a}{6}\left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)\]

 ![Diagrams showing exactness degrees for different rules]
8.1.2 Accuracy and Stability
Interpolatory Quadrature: Accuracy

- Let \(p_{n-1} \) be an interpolant of \(f \) at nodes \(x_1, \ldots, x_n \) (of degree \(n - 1 \)).

 Recall
 \[
 \sum_i \omega_i f(x_i) = \int_a^b p_{n-1}(x)dx.
 \]

 What can you say about the accuracy of the method?
Demo: Accuracy of Newton-Cotes
Interpolatory Quadrature: Stability

- Let p_n be an interpolant of f at nodes x_1, \ldots, x_n (of degree $n - 1$).
 Recall
 \[
 \sum_i \omega_i f(x_i) = \int_a^b p_n(x) \, dx
 \]

 What can you say about the stability of this method?

Consider \(\hat{f}(x) = f(x) + e(x) \).

\[
\left| \sum_i \omega_i f(x_i) - \sum_i \omega_i \hat{f}(x_i) \right| = \left| \sum_i \omega_i e(x_i) \right|
\leq \|e\|_\infty \sum_i |\omega_i|
\]

\[\sum \omega_i = b-a\]
About Newton-Cotes

- What’s not to like about Newton-Cotes quadrature?
 - Stability for high point counts: \(\times \)
 - \(V_{dm} \) is ill-conditioned: \(\times \)
 - Inherits all issues from high-order poly interp.
 - Hard to extend to high # points

Ideas: Lots of tiny sub-quadratures \(\text{“Composite quad.”} \)

Make high-order work

\(\text{Gaussian quadrature} \)
8.1.3 Composite Quadrature

- High-order polynomial interpolation requires a high degree of smoothness of the function.

Idea: Stitch together multiple lower-order quadrature rules to alleviate smoothness requirement.

e.g. trapezoidal

\[\int_a^b f(x) \, dx \approx \sum_{j=1}^{n} \omega_{j,i} f(x_{i,j}) \]

What can we say about the error in this case?

Single interval: \[| \int_a^b (f - p_{n-1}) | \leq C \cdot h^{n+1} \| f^{(n)} \|_{\infty} \]

Multi-interval: \[\left| \int_a^b f(x) \, dx - \sum_{j=1}^{n} \sum_{i=1}^{m} \omega_{j,i} f(x_{i,j}) \right| \leq C \cdot \| f^{(n)} \|_{\infty} \sum_{j=1}^{n} (a_j - a_{j-1})^{n+1} \]

\[\leq C \cdot \| f^{(n)} \|_{\infty} \sum_{j=1}^{n} h^n (a_j - a_{j-1}) \]

\[= C \cdot \| f^{(n)} \|_{\infty} h^n \left(\sum_{j=1}^{n} (a_j - a_{j-1}) \right) = \frac{b-a}{\sum_{j=1}^{n} (a_j - a_{j-1})} \]
8.1.4 Gaussian Quadrature

- So far: nodes chosen from outside.
 Can we gain something if we let the quadrature rule choose the weights, too? **Hope:** More design freedom \implies Exact to higher degree.

Demo: Gaussian quadrature weight finder

$$\int_{a}^{b} x^k \, dx = \alpha_1 x^k + \cdots + \alpha_n x^k$$
8.2 Numerical Differentiation