Outline

(1) Partial Differential Equations

2 Numerical Methods for PDEs
(3) Sparse Linear Systems

Partial Differential Equations

- Partial differential equations (PDEs) involve partial derivatives with respect to more than one independent variable
- Independent variables typically include one or more space dimensions and possibly time dimension as well
- More dimensions complicate problem formulation: we can have pure initial value problem, pure boundary value problem, or mixture of both
- Equation and boundary data may be defined over irregular domain

Partial Differential Equations, continued

- For simplicity, we will deal only with single PDEs (as opposed to systems of several PDEs) with only two independent variables, either
- two space variables, denoted by x and y, or
- one space variable denoted by x and one time variable denoted by t
- Partial derivatives with respect to independent variables are denoted by subscripts, for example
- $u_{t}=\partial u / \partial t$
- $u_{x y}=\partial^{2} u / \partial x \partial y$

Classification of PDEs

- Order of PDE is order of highest-order partial derivative appearing in equation
- For example, advection equation is first order

$$
u_{t}=-c u_{x}
$$

- Important second-order PDEs include
- Heat equation: $u_{t}=u_{x x}$
- Wave equation: $u_{t t}=u_{x x}$
- Laplace equation: $u_{x x}+u_{y y}=0$

Classification of PDEs, continued

- Second-order linear PDEs of general form

$$
a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u+g=0
$$

are classified by value of discriminant $b^{2}-4 a c$

- $b^{2}-4 a c>0$: hyperbolic (e.g., wave equation)
- $b^{2}-4 a c=0$: parabolic (e.g., heat equation)
- $b^{2}-4 a c<0$: elliptic (e.g., Laplace equation)

Classification of PDEs, continued

Classification of more general PDEs is not so clean and simple, but roughly speaking

- Hyperbolic PDEs describe time-dependent, conservative physical processes, such as convection, that are not evolving toward steady state
- Parabolic PDEs describe time-dependent, dissipative physical processes, such as diffusion, that are evolving toward steady state
- Elliptic PDEs describe processes that have already reached steady state, and hence are time-independent

Time-Dependent Problems

- Time-dependent PDEs usually involve both initial values and boundary values

Time-Dependent Problems

- Time-dependent PDEs usually involve both initial values and boundary values

Example: Poisson Equation in 2D

- Ex 1: If $f(x, y)=\sin \pi x \sin \pi y$,

$$
u(x, y)=\frac{1}{2 \pi^{2}} \sin \pi x \sin \pi y
$$

- Ex 2: If $f(x, y)=1$,

$$
u(x, y)=\sum_{k, l \text { odd }}^{\infty, \infty} \frac{16}{\pi^{2} k l\left(k^{2}+l^{2}\right)} \sin k \pi x \sin l \pi y .
$$

- Q: How large must k and l be for "exact" solution to be correct to ϵ_{M} ?
- Spectral collocation would yield $u=u_{\text {exact }} \pm \epsilon_{M}$ by $N \approx 15$.

Numerical Solution: Finite Differences

" 5 -point finite-difference stencil"

- Here, the unknowns are $\mathbf{u}=\left[u_{11}, u_{21}, \ldots, u_{n_{x}, n_{y}}\right]^{T}$.
- This particular (so-called natural or lexicographical) ordering gives rise to a banded system matrix for \mathbf{u}.
- As in the 1D case, the error is $O\left(\Delta x^{2}\right)+O\left(\Delta y^{2}\right)=O\left(h^{2}\right)$ if we take $\Delta x=\Delta y=: h$.
- Assuming for simplicity that $N=n_{x}=n_{y}$, we have $n=N^{2}$ unknowns.
- For $i, j \in[1, \ldots, N]^{2}$, the governing finite difference equations are

$$
-\left(\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{\Delta y^{2}}\right)=f_{i j}
$$

- Assuming a lexicographical ordering in which the i - $\left(x_{-}\right)$index advances fastest, the system matrix has the form

- The system matrix A is
- sparse, with 5 nonzeros per row (good)
- and has a bandwith N (bad).
- The difficulty is that solving $A \mathbf{u}=\mathbf{f}$ using Gaussian elimination results in signifcant fill- each of the factors L and U have $N^{3}=n^{3 / 2}$ nonzeros.
- Worse, for 3D problems with N^{3} unknowns, $\mathbf{u}=\left[u_{111}, u_{211}, \ldots, u_{n_{x}, n_{y}, n_{z}}\right]^{T}, A$ is
- sparse, with 7 nonzeros per row (good)
- and has a bandwith N^{2} (awful).
- In 3D, $L U$ decomposition yields $N^{5}=n^{5 / 3}$ nonzeros in L and U.
- The situation can be rescued in 2D with a reordering of the unknowns (e.g., via nesteddissection) to yield $O(n \log n)$ nonzeros in L and U.
- In 3D, nested-dissection yields $O\left(n^{3 / 2}\right)$ nonzeros in the factors. Direct solution is not scalable for more than two space dimensions.
- The following Matlab examples illustrate the issue of fill:
- fd_poisson_2d.m
- fd_poisson_3d.m

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

- As expected, the error scales like $h^{2} \sim 1 / N^{2}$ in both 2D and 3D.
- The resepctive storage costs (and work per rhs) are $\sim N^{3}$ and N^{5}.
- Alternative orderings are asymptotically better, but the constants tend to be large.

Matrix-Fill for 2D Poisson, symamd Ordering

- We see for $N=80(n=6400)$ a $5 \times$ reduction in number of nonzeros by reording with matlab's symamd function.
- The requirements for indirect addressing to access elements of the complacty-stored matrix further adds to overhead.
- Gains tend to be realized only for very large N and are even less beneficial in 3D.
- Despite this, it's still a reasonable idea to reorder in matlab because it's available and easy to use.

Iterative Solvers

- The curse of dimensionality for $d>2$ resulted in a move towards iterative (rather than direct-, $L U$-based) linear solvers once computers became fast enough to tackle 3D problems in the mid-80s.
- With iterative solvers, factorization

$$
A \mathbf{u}=\mathbf{f} \Longrightarrow \mathbf{u}=A^{-1} \mathbf{f}=U^{-1} L^{-1} \mathbf{f}
$$

is replaced by, say,

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}+M^{-1}\left(\mathbf{f}-A \mathbf{u}_{k}\right),
$$

which only requires matrix-vector products.

- With $\mathbf{e}_{k}:=\mathbf{u}-\mathbf{u}_{k}$, we have

$$
\mathbf{e}_{k+1}=\left(I-M^{-1} A\right) \mathbf{e}_{k}, \quad \text { (as we've seen before). }
$$

- This is known as Richardson iteration.
- For the particular case $M=D=\operatorname{diag}(A)$, it is Jacobi iteration.
- We can derive Jacobi iteration (and multigrid by looking at a parabolic PDE, known as the (unsteady) heat equation. (The Poisson equation is sometimes referred to as the steady-state heat equation.)
- The intrinsic advantage of iterative solvers is that there is no fill associated with matrix factorization.
- Often one does not even construct the matrix. Rather, we simply evaluate the residual $\mathbf{r}_{k}:=\mathbf{f}-A \mathbf{u}_{k}$ and set $\mathbf{u}_{k+1}=\mathbf{u}_{k}+M^{-1} \mathbf{r}_{k}$.
- For a sparse matrix A, the operation count is $O(n)$ per iteration.
- Assuming the preconditioner cost is also sparse, the overall cost is $O\left(n k_{\max }\right)$, where $k_{\text {max }}$ is the number of iterations required to reach a desired tolerance.
- The choice of iteration (Richardson, conjugate gradient, GMRES) can greatly influence $k_{\text {max }}$.
- Even more significant is the choice of M.
- Usually, one seeks an M such that the cost of solving $M \mathbf{z}=\mathbf{r}$ is $O(n)$ and that $k_{\max }=O(1)$. That is, the iteration count is bounded, independent of n.
- The overall algorithm is therefore $O(n)$, which is optimal.

Iterative Solvers - Linear Elliptic Problems

- PDEs give rise to large sparse linear systems of the form

$$
A \mathbf{u}=\mathbf{f}
$$

Here, we'll take A to be the (SPD) matrix arising from finite differences applied to the Poisson equation

$$
\begin{aligned}
-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) & =f(x, y) \quad x, y \in[0,1]^{2}, \quad u=0 \text { on } \partial \Omega \\
-\left(\frac{\delta^{2} u}{\delta x^{2}}+\frac{\delta^{2} u}{\delta y^{2}}\right)_{i j} & \left.\approx f\right|_{i j},
\end{aligned}
$$

- Assuming uniform spacing in x and y we have

$$
\frac{\delta^{2} u}{\delta x^{2}}:=\frac{u_{i+1, j}-2 u_{i j}+u_{i-1, j}}{h^{2}} \quad \text { and } \quad \frac{\delta^{2} u}{\delta y^{2}}:=\frac{u_{i, j+1}-2 u_{i j}+u_{i, j-1}}{h^{2}}
$$

- Our finite difference formula is thus,

$$
\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}-4 u_{i j}+u_{i, j+1}+u_{i, j-1}\right)=f_{i j} .
$$

- Rearranging, we can solve for $u_{i j}$:

$$
\begin{aligned}
\frac{4}{h^{2}} u_{i j} & =f_{i j}+\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) \\
u_{i j} & =\frac{h^{2}}{4} f_{i j}++\frac{1}{4}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right)
\end{aligned}
$$

- Jacobi iteration uses the preceding expression as a fixed-point iteration:

$$
\begin{aligned}
u_{i j}^{k+1} & =\frac{h^{2}}{4} f_{i j}+\frac{1}{4}\left(u_{i+1, j}^{k}+u_{i-1, j}^{k}+u_{i, j+1}^{k}+u_{i, j-1}^{k}\right) \\
& =\frac{h^{2}}{4} f_{i j}+\text { average of current neighbor values }
\end{aligned}
$$

- Note that this is analogous to

$$
\begin{aligned}
& u_{i j}^{k+1}=u_{i j}^{k}+\frac{h^{2}}{4}\left[f_{i j}+\frac{1}{h^{2}}\left(u_{i+1, j}^{k}+u_{i-1, j}^{k}-4 u_{i j}^{k}+u_{i, j+1}^{k}+u_{i, j-1}^{k}\right)\right] \\
& \mathbf{u}_{k+1}=\mathbf{u}_{k}+\Delta t\left(\mathbf{f}-A \mathbf{u}_{k}\right), \Delta t:=\frac{h^{2}}{4}
\end{aligned}
$$

which is Euler forward applied to

$$
\frac{d \mathbf{u}}{d t}=-A \mathbf{u}+\mathbf{f}
$$

- We note that we have stability if $|\lambda \Delta t|<2$

- Recall that the eigenvalues for the 1D diffusion operator are

$$
\lambda_{j}=\frac{2}{h^{2}}(1-\cos j \pi \Delta x)<\frac{4}{h^{2}}
$$

- In 2 D , we pick up contributions from both $\frac{\delta^{2} u}{\delta x^{2}}$ and $\frac{\delta^{2} u}{\delta y^{2}}$, so

$$
\max |\lambda|<\frac{8}{h^{2}}
$$

and we have stability since

$$
\max |\lambda \Delta t|<\frac{8}{h^{2}} \frac{h^{2}}{4}=2
$$

- So, Jacobi iteration is equivalent to solving $A \mathbf{u}=\mathbf{f}$ by time marching $\frac{d \mathbf{u}}{d t}=-A \mathbf{u}+\mathbf{f}$ using EF with maximum allowable timestep size,

$$
\Delta t=\frac{h^{2}}{4}
$$

Jacobi Iteration in Matrix Form

- Our unsteady heat equation has the matrix form

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}+\Delta t\left(\mathbf{f}-A \mathbf{u}_{k}\right)
$$

- For variable diagonal entries, Richardson iteration is

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}+\sigma M^{-1}\left(\mathbf{f}-A \mathbf{u}_{k}\right)
$$

- If $\sigma=1$ and $M=D^{-1}=\operatorname{diag}(A)\left[d_{i i}=1 / a_{i i}, d_{i j}=0, i \neq j\right]$, we have standard Jacobi iteration.
- If $\sigma<1$ we have damped Jacobi.
- M is generally known as a smoother or a preconditioner, depending on context.

Rate of Convergence for Jacobi Iteration

- Let $\mathbf{e}_{k}:=\mathbf{u}-\mathbf{u}_{k}$.
- Since $A \mathbf{u}=\mathbf{f}$, we have

$$
\begin{aligned}
\mathbf{u}_{k+1} & =\mathbf{u}_{k}+\Delta t\left(A \mathbf{u}-A \mathbf{u}_{k}\right) \\
-\mathbf{u} & =-\mathbf{u} \\
--- & ---------- \\
-\mathbf{e}_{k+1} & =-\mathbf{e}_{k}-\sigma \Delta t A \mathbf{e}_{k} \\
-\mathbf{e}_{k+1} & =-(I-\sigma \Delta t A) \mathbf{e}_{k} \\
\mathbf{e}_{k} & =(I-\sigma \Delta t A)^{k} \mathbf{e}_{0} \\
& =(I-\sigma \Delta t A)^{k} \mathbf{u} \quad \text { if } \mathbf{u}_{0}=0 .
\end{aligned}
$$

- If $\sigma<1$, then the high wavenumber error components will decay because $\lambda \Delta t$ will be well within the stability region for EF .
- The low-wavenumber components of the solution (and error) evolve like $e^{-\lambda \sigma \Delta t k}$, because these will be well-resolved in time by Euler forward.
- Thus, we can anticipate

$$
\left\|\mathbf{e}_{k}\right\| \approx\|\mathbf{u}\| e^{-\lambda_{\min } \sigma \Delta t k}
$$

with $\lambda_{\text {min }} \approx 2 \pi^{2}$ (for 2 D).

- If $\sigma \approx 1$, we have

$$
\left\|\mathbf{e}_{k}\right\| \approx\|\mathbf{u}\| e^{-2 \pi^{2}\left(h^{2} / 4\right) k} \leq \mathrm{tol}
$$

- Example, find the number of iterations when tol $=10^{-12}$.

$$
\begin{aligned}
e^{-\left(\pi^{2} h^{2} / 4\right) k} & \approx 10^{-12} \\
-\left(\pi^{2} h^{2} / 4\right) k & \approx \ln 10^{-12} \approx 24(27.6 \ldots) \\
k & \approx \frac{28 \cdot 2}{\pi^{2} h^{2}} \approx 6 N^{2}
\end{aligned}
$$

Recap

- Low-wavenumber components decay at a fixed rate: $e^{-\lambda_{\min } \Delta t k}$.
- Stability mandates $\Delta t<h^{2} / 4=1 / 4(N+1)^{-2}$.
- Number of steps scales like N^{2}.
- Note, if $\sigma=1$, then highest and lowest wavenumber components decay at same rate.
- If $\frac{1}{2}<\sigma<1$, high wavenumber components of error decay very fast. We say that damped Jacobi iteration is a smoother.

Example: 1D Jacobi Iteration

Solution after
1 iteration

Error after 1 iteration

Error after 5 itierations

Observations:

- Error, \mathbf{e}_{k} is smooth after just a few iterations:
- Error components are $\approx \hat{u}_{j} e^{-j^{2} k h^{2} \pi^{2} / 4} \sin k \pi x_{j}$, and components for $j>1$ rapidly go to zero.
- Exact solution is $\mathbf{u}=\mathbf{u}_{k}+\mathbf{e}_{k} \quad$ (\mathbf{e}_{k} unknown, but smooth).
- Error satisfies, and can be computed from,

$$
A \mathbf{e}_{k}=\mathbf{r}_{k} \quad\left(:=\mathbf{f}-A \mathbf{u}_{k}=A \mathbf{u}-A \mathbf{u}_{k}=A \mathbf{e}_{k}\right)
$$

- These observations suggest that the error can be well approximated on a coarser grid and added back to \mathbf{u}_{k} to improve the current guess.
- The two steps, smooth and coarse-grid correction are at the heart of one of the fastest iteration strategies, known as multigrid.

Multigrid:

- Solve $A \mathbf{e}_{k}=\mathbf{r}_{k}$ approximately on a coarse grid and set $\tilde{\mathbf{u}}_{k}=\mathbf{u}_{k}+\tilde{\mathbf{e}}_{k}$.
- Approximation strategy is similar to least squares. Let

$$
\begin{aligned}
\tilde{\mathbf{e}}_{k} & =V \mathbf{e}_{c}, \quad \text { and } \\
A V \mathbf{e}_{c} & \approx \mathbf{r}
\end{aligned}
$$

where V is an $n \times n_{c}$ matrix with $n_{c} \approx n / 2$.

- Typically, columns of V interpolate coarse point values to their midpoints.
- Most common approach (for $A \mathrm{SPD}$) is to require \mathbf{e}_{c} to solve

$$
\begin{aligned}
& V^{T}\left[A V \mathbf{e}_{c}-\mathbf{r}\right]=0 \\
& \Longrightarrow \tilde{\mathbf{e}}_{k}=V\left(V^{T} A V\right)^{-1} V^{T} \mathbf{r}=V\left(V^{T} A V\right)^{-1} V^{T} A \mathbf{e}_{k} .
\end{aligned}
$$

- For $A \mathrm{SPD}, \tilde{\mathbf{e}}_{k}$ is the A-orthogonal projection of \mathbf{e}_{k} onto $\mathcal{R}(V)$.

An example of V for $n=5$ and $n_{c}=2$ is

$$
V=\left[\begin{array}{cc}
\frac{1}{2} & \\
1 & \\
\frac{1}{2} & \frac{1}{2} \\
& 1 \\
& \frac{1}{2}
\end{array}\right]
$$

\% Multigrid stuff of n must be odd!

```
nc = (n-1)/2; V=spalloc(n,nc,n*nc); i=1;
for j=1:nc;
    V(i,j)=1/2; V(i+1,j)=1; V(i+2,j)=1/2; i=i+2;
end;
Ac = V'*A*V;
```

\% A Simple Two-Level MG iteration:
for $k=1: 5000$
$r=f-A * u ;$
\% Smoothing step
$\mathrm{u}=\mathrm{u}+\mathrm{d} * \mathrm{r}$;
$r=f-A * u ; \quad$ o Coarse-grid correction
rc $=V^{\prime *}$ r;
$\mathrm{ec}=\mathrm{V}$ (Ac \ rc);
$u=u+e c ;$
poisson_mg.m demo
end;

Example: Damped Jacobi (Richardson) Iteration

Solution after
1 iteration

Error after 1 iteration

Error after 5 itierations

Multigrid Summary - Main Ideas

Solution after 5 iterations

Error after 5 iterations

- Take a few damped-Jacobi steps (smoothing the error), to get \mathbf{u}_{k}.
- Approximate this smooth error, $\mathbf{e}_{k}:=\mathbf{u}-\mathbf{u}_{k}$, on a coarser grid.
- Exact error satisfies

$$
A \mathbf{e}_{k}=A \mathbf{u}-A \mathbf{u}_{k}=\mathbf{f}-A \mathbf{u}=: \mathbf{r}_{k} .
$$

- Let $\mathbf{e}_{f}:=V \mathbf{e}_{c}$ be the interpolant of \mathbf{e}_{c}, the coarse-grid approximation to \mathbf{e}_{k}.
- \mathbf{e}_{f} is closest element in $\mathcal{R}(V)$ to \mathbf{e}_{k} (in the A-norm), given by the projection:

$$
\left.\mathbf{e}_{f}=V\left(V^{T} A V\right)^{-1} V^{T} A \mathbf{e}_{k}=V\left(A_{c}\right)^{-1}\right) V^{T} \mathbf{r}_{k}
$$

- Update \mathbf{u}_{k} with the coarse-grid correction:

$$
\mathbf{u}_{k} \longleftarrow \mathbf{u}_{k}+\mathbf{e}_{f}
$$

- Smooth again and repeat.

Example: Two-Level Multigrid

Solution after
1 iteration

Error after 5 itierations

Example: Two-Level Multigrid

Solution after
1 iteration

Error after 1 iteration

Iteration
History

Iteration Number, k

Error after 5 itierations

Multigrid Comments

- Smoothing can be improved using under-relaxation ($\sigma=2 / 3$ is optimal for 1D case).
- Basically - want more of the high-end error spectrum to be damped.
- System in A_{c} is less expensive to solve, but is typically best solved by repeating the smooth/ coarse-grid correct pair on yet another level down.
- Can recur until $\mathrm{n}_{\mathrm{c}} \sim 1$, at which point system is easy to solve.
- Typical MG complexity is $\mathrm{O}(\mathrm{n})$ or $\mathrm{O}(\mathrm{n} \log \mathrm{n})$, with very good constants in higher space dimensions ($\mathrm{N}_{\mathrm{c}}=\mathrm{N} / 2 \rightarrow \mathrm{n}_{\mathrm{c}}=\mathrm{n} / 8$ in 3D).
- For high aspect-ratio cells, variable coefficients, etc., smoothing and coarsening strategies require more care, so this continues to be an active research area.

Stability Region for Euler's Method

Growth Factors for Real λ

- Each growth factor approximates $\mathrm{e}^{\lambda \Delta \mathrm{t}}$ for $\lambda \Delta \mathrm{t} \rightarrow 0$
- For EF, |G| is not bounded by 1
- For Trapezoidal Rule, local (small $\lambda \Delta \mathrm{t}$) approximation is $\mathrm{O}\left(\lambda \Delta \mathrm{t}^{2}\right)$, but $|\mathrm{G}| \rightarrow-1$ as $\lambda \Delta \mathrm{t} \rightarrow-\infty$. [Trapezoid method is not L-stable.]
\square BDF2 will give $2^{\text {nd }}$-order accuracy, stability, and $|\mathrm{G}| \rightarrow 0$ as $\lambda \Delta \mathrm{t} \rightarrow-\infty$.

Time Dependent Problems

- We'll consider two examples: diffusion (heat equation) and advection.
heat equation: $\quad \frac{\partial u}{\partial t}=\nu \frac{\partial^{2} u}{\partial x^{2}}+\mathrm{BCs}$ and IC
advection: $\quad \frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x}+\mathrm{BCs}$ and IC

Heat Equation:

$$
\frac{\partial u}{\partial t}=\nu \frac{\partial^{2} u}{\partial x^{2}}, \quad \nu>0
$$

- For the heat equation, the solution evolves in the direction of local curvature.
- If the the solution is locally concave down, u decreases there.
- If the the solution is concave up, u increases.

Example Solutions (eigenfunctions): $u_{t}=\nu u_{x x}, u(0)=u(1)=0$

$$
\begin{aligned}
u(x, t)= & \hat{u}(t) \sin \pi x \\
\frac{\partial u}{\partial t}= & \frac{d \hat{u}}{d t} \sin \pi x=-\nu \pi^{2} \hat{u} \sin \pi x \\
& \frac{d \hat{u}}{d t}=-\nu \pi^{2} \hat{u} \\
& \hat{u}=e^{-\nu \pi^{2} t} \hat{u}(0)
\end{aligned}
$$

$$
\begin{aligned}
u(x, t)= & \hat{u}(t) \sin 10 \pi x \\
\frac{\partial u}{\partial t}= & \frac{d \hat{u}}{d t} \sin \pi x=-\nu 100 \pi^{2} \hat{u} \sin \pi x \\
& \frac{d \hat{u}}{d t}=-\nu 100 \pi^{2} \hat{u} \\
& \hat{u}=e^{-\nu 100 \pi^{2} t} \hat{u}(0)
\end{aligned}
$$

\longrightarrow Very rapid decay.

Solution of Partial Differential Equations

- Unsteady Heat Equation:

$$
u_{t}=\nu u_{x x}+q(x, t), \quad u(x=0, t)=u(x=L, t)=0, \quad u(x, t=0)=u^{0}(x)
$$

- Discretize in space:
- Finite difference
- Weighted residual technique (FEM, Galerkin + high-order polynomials, etc.)

- In ODE form:

$$
\frac{d \mathbf{u}}{d t}=-\nu A \mathbf{u}+\mathbf{q}, \quad \mathbf{u}(t=0)=u^{0}
$$

- Here, $\Delta x=1 /(n+1)$ and A is the SPD tridiagonal matrix

$$
A=\frac{1}{\Delta x^{2}}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right)
$$

- Eigenvalues:

$$
\begin{aligned}
\lambda(A)=\frac{2}{\Delta x^{2}}(1-\cos (k \pi \Delta x)) & \in\left(\pi^{2}\left(1+O\left(\Delta x^{2}\right)\right), 4(n+1)^{2}\right) \\
& \in\left(\pi^{2}\left(1+O\left(\Delta x^{2}\right)\right), \frac{4}{\Delta x^{2}}\right)
\end{aligned}
$$

- Can view this semi-discrete form as a system of ODEs:

$$
\frac{d \mathbf{u}}{d t}=\mathbf{f}(\mathbf{u}) \quad:=-\nu A \mathbf{u}+\mathbf{q}(\mathbf{x}, t)
$$

- Jacobian

$$
\frac{d f_{i}}{d u_{j}}=-\nu a_{i j} \quad J=-\nu A
$$

- Stability is determined by the eigenvalues of J and by the choice of timestepper.
- Some possible explicit timesteppers

$$
\begin{aligned}
\text { EF: } & & \mathbf{u}^{k+1}=\mathbf{u}^{k}+\Delta t \mathbf{f}^{k} \\
\text { AB3: } & & \mathbf{u}^{k+1}=\mathbf{u}^{k}+\Delta t\left(\frac{23}{12} \mathbf{f}^{k}-\frac{16}{12} \mathbf{f}^{k-1}+\frac{5}{12} \mathbf{f}^{k-2}\right)
\end{aligned}
$$

- Stable, as long as $\lambda(J) \Delta t$ in the stability region.
- Stability:
- $\lambda(J)=-\nu \lambda(A)=-\frac{2 \nu}{\Delta x^{2}}(1-\cos k \pi \Delta x)$.
- Worst case is $\quad|\lambda(J)| \sim\left|\frac{4 \nu}{\Delta x^{2}}\right|$.

Stability Regions, EF, AB2, AB3.

which is a very severe timestep restriction.

- Question:

What is the maximum allowable timestep size for AB3 in this case?

- Question:

What is the maximum allowable timestep size for AB3 in this case?

Stability Regions, EF, AB2, AB3.

- Severity of explicit timestep restriction:
- Suppose $\nu=1$ and you want error $\approx 10^{-6}$.
$\longrightarrow \Delta x \approx 10^{-3}$.
$\longrightarrow \Delta t \approx 10^{-6}$, just for stability.
- This is an example of a stiff system.
- High wavenumbers $(\lambda(A))$ are uninteresting but restrict the timestep size.
- For this reason, the heat equation is most often treated implicitly.
- Possible Implicit Approaches:

$$
\frac{d \mathbf{u}}{d t}=\mathbf{f}(\mathbf{u})\left\{\begin{array}{l}
\mathbf{E B} \\
\text { Trapezoid (aka Crank-Nicolson) } \\
\text { BDF2 or BDF3 }
\end{array}\right.
$$

- Examples:

$$
\begin{aligned}
\text { EB: } & \mathbf{u}^{k+1}=\mathbf{u}^{k}+\Delta t\left[-\nu A \mathbf{u}^{k+1}+\mathbf{q}\left(\mathbf{x}, t^{k+1}\right)\right] \\
\mathbf{C N}: & \frac{\mathbf{u}^{k+1}-\mathbf{u}^{k}}{\Delta t}=+\frac{1}{2}\left(-\nu A \mathbf{u}^{k+1}+\mathbf{q}^{k+1}-\nu A \mathbf{u}^{k}+\mathbf{q}^{k}\right) \\
\text { BDF2: } & \frac{3 \mathbf{u}^{k+1}-4 \mathbf{u}^{k}+\mathbf{u}^{k-1}}{2 \Delta t}=-\nu A \mathbf{u}^{k+1}+\mathbf{q}\left(\mathbf{x}, t^{k+1}\right)
\end{aligned}
$$

- EB Example:

$$
\begin{aligned}
\mathbf{u}^{k+1}+\nu \Delta t A \mathbf{u}^{k+1} & =\mathbf{u}^{k}+\Delta t \mathbf{q}^{k+1} \\
{[I+\nu \Delta t A] \mathbf{u}^{k+1} } & =\mathbf{u}^{k}+\Delta t \mathbf{q}^{k+1} \\
H \mathbf{u}^{k+1} & =\mathbf{u}^{k}+\Delta t \mathbf{q}^{k+1}
\end{aligned}
$$

- Here, $H:=[I+\nu \Delta t A]$ is SPD , tridiagonal, and strongly diagonally dominant. (In all number of space dimensions.)
- $H \mathbf{u}=\mathbf{f}$ is easier to solve than $A \mathbf{u}=\mathbf{f}$.
- Jacobi- (diagonal-) preconditioned conjugate gradient iteration is often the best choice of solver, particularly in higher space dimensions.
- Note that all the implicit solvers end up with the form $H \mathbf{u}=\mathbf{f}$ and generally have the same costs for the linear heat equation considered here.
- Note that CN (aka trapezoid method) is not L-stable and will have potential difficulties noted in our discussion of IVPs.
- Discretization Based on Weighted Residual Technique in Space
- Coming back to the heat equation (with BCs/ICs),

$$
u_{t}=\nu u_{x x}+q(x, t),
$$

- WRT - residual orthogonal to test functions

$$
\int v\left(\nu u_{x x}+q(x, t)-u_{t}\right) d x=0 \forall v X_{0}^{N}
$$

- If $u=\sum_{j=1}^{n} u_{j}(t) \phi_{j}(x)$ and $v=\phi_{i}(x)$, then

$$
\text { LHS: } \quad \int v \frac{\partial u}{\partial t} d x=\left(\sum_{j=1}^{n} \phi_{i} \phi_{j} d x\right) u_{j}(t)=B \frac{d \mathbf{u}}{d t},
$$

with the mass matrix B having entries

$$
B_{i j}:=\int \phi_{i}(x) \phi_{j}(x) d x .
$$

- On the right, we have

$$
\begin{aligned}
\mathrm{RHS} & =\nu \int v \frac{\partial^{2} u}{\partial x^{2}} d x+\int v q d x \\
& =-\nu \int \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} d x+\int v q d x .
\end{aligned}
$$

- Setting $v=\phi_{i}$ and $u=\sum_{j} \phi_{j} u_{j}(t)$,

$$
\begin{aligned}
\mathrm{RHS} & =-\nu \sum_{j=1}^{n}\left(\int \frac{d \phi_{i}}{d x} \frac{d \phi_{i}}{d x} d x\right) u_{j}(t)+\int \phi_{i} q d x \\
& =-\nu A \mathbf{u}+\mathbf{b}, \quad\left\{\begin{array}{l}
a_{i j}:=\int \frac{d \phi_{i}}{d x} \frac{d \phi_{i}}{d x} d x \\
b_{i}:=\int \phi_{i} q d x
\end{array}\right.
\end{aligned}
$$

- In summary, the WRT formulation is, Find $u(x, t) \in X_{0}^{N}$ such that,

$$
\int v \frac{\partial u}{\partial t} d x=-\nu \int \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} d x+\int v q d x \quad \forall v \in X_{0}^{N}
$$

which leads to the ODE

$$
B \frac{d \mathbf{u}}{d t}=-\nu A \mathbf{u}+\mathbf{b}, \quad \text { plus initial condition } \mathbf{u}(t=0)=\mathbf{u}^{0}
$$

- In standard form,

$$
\frac{d \mathbf{u}}{d t}=-\nu B^{-1} A \mathbf{u}+B^{-1} \mathbf{b}
$$

- Stability is thus governed by $\lambda(J)=-\nu \lambda\left(B^{-1} A\right)$, not just $-\nu \lambda(A)$.
- Presence of B in front of $\frac{d \mathbf{u}}{d t}$ must not be ignored.
- Choice of timestepper motivated by same concerns as for finite-differences:
$-|\lambda(J)| \sim O\left(\Delta x^{2}\right)$
- Implicit timestepping generally preferred
- SPD systems
- Jacobi (diagonal) preconditioned conjugate gradient iteration is generally the solver of choice.

Time Stepping for Diffusion Equation:

- Recall, with boundary conditions $u(0)=u(1)=0$, the finite difference operator

$$
A \mathbf{u}=-\frac{\nu}{h^{2}}\left[u_{j+1}-u_{j}-u_{j-1}\right]
$$

with $h:=1 /(n+1)$ has eigenvalues in the interval $[0, M]$ with

$$
M=\max _{k} \lambda_{k}=\max _{k} \frac{2 \nu}{h^{2}}[1-\cos k \pi h] \sim \frac{4}{h^{2}}
$$

- Our ODE is $\mathbf{u}_{t}=-A \mathbf{u}$, so we are concerned with $-\lambda_{k}$.
- With Euler Forward, we require $|\lambda \Delta t|<2$ for stability,
$-\longrightarrow \Delta t<\frac{h^{2}}{2}$
- no matter how smooth the initial condition.
- This intrinsic stiffness motivates the use of implicit methods for the heat equation (BDF2 is a good one).

```
heat1d_ef.m and heat1d_eb.m
```


Example: Advection Equation

- Advection equation

$$
u_{t}=-c u_{x}
$$

where c is nonzero constant

- Unique solution is determined by initial condition

$$
u(0, x)=u_{0}(x), \quad-\infty<x<\infty
$$

where u_{0} is given function defined on \mathbb{R}

- We seek solution $u(t, x)$ for $t \geq 0$ and all $x \in \mathbb{R}$
- From chain rule, solution is given by $u(t, x)=u_{0}(x-c t)$
- Solution is initial function u_{0} shifted by $c t$ to right if $c>0$, or to left if $c<0$

Partial Differential Equations
Characteristics
Classification

Example, continued

Typical solution of advection equation, with initial function "advected" (shifted) over time < interactive example >

Characteristics

- Characteristics for PDE are level curves of solution
- For advection equation $u_{t}=-c u_{x}$, characteristics are straight lines of slope $1 / c$

- Characteristics determine where boundary conditions can or must be imposed for problem to be well-posed

Matlab Demo: Convection

```
c=1; Tf = 4; % Final time
x0=-5; xn=5;
dx = .01; x=x0:dx:xn; x=x'; n=length(x);
a = -1; b=0; c=1; e = ones(n,1);
C = spdiags([a*e b*e c*e],-1:1, n, n); C = C/(2*dx);
C(n,n)=-C(n,n-1); C(1,1)=C(1,2); % To drain energy at bdry
CFL = 0.50; dt = CFL*dx/abs(c); nsteps = Tf/dt;
u=exp(-x.*x/.04); hold off; plot(x,u,'k-'); hold on;
f=0*u;f1=0*u;
io=floor(nsteps/20); kk=0; t=0;
for k=1:nsteps; t=t+dt;
    if k==1; c0=1; c1=0; c2=0; end;
    if k==2; c0=3/2; c1=-1/2; c2=0; end;
    if k==3; c0=23/12; c1=-16/12; c2=5/12; end;
    f2=f1; f1=f; f= -C*u;
    rhs = c0*f + c1*f1 + c2*f2;
    u = u+dt*rhs;
    if mod(k,io)==0; plot(x,u,'r-'); pause(.2); end;
end;
```


Matlab Demo: Convection

Time Stepping for Advection Equation: $\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x}$

- Unlike the diffusion equation, which smears out the initial condition (with high wavenumber components decaying particularly fast), the advection equation simply moves things around, with no decay.
- This property is evidenced by the spatial operator having purely (or close to purely) imaginary eigenvalues.
- Preserving high-wavenumber content (in space) for all time makes this problem particularly challenging.
- There is always some spatial discretization error.
- Its effects accumulate over time (with no decay of the error).
- For sufficiently large final time T any fixed grid (i.e., fixed n) simulation for general problems will eventually have too much error.
- Long time-integrations, therefore, typically require relatively fine meshes and/or high-order spatial discretizations.

CFL, Eigenvalues, and Stability: Fourier Analysis

- Consider: $u_{t}=-c u_{x}, \quad u(0)=u(1)$ (periodic BCs)
- Centered difference formula in space:

$$
\begin{gathered}
\frac{d u_{j}}{d t}=-\frac{c}{2 \Delta x}\left(u_{j+1}-u_{j-1}\right)=\left.C \underline{u}\right|_{j} \\
C=-\frac{1}{2 \Delta x} \underbrace{\left[\begin{array}{cccccc}
0 & 1 & & & -1 \\
-1 & 0 & 1 & & \\
& -1 & \cdots & \cdots & \\
& & \cdots & \cdots & 1 \\
1 & & & -1 & 0
\end{array}\right]}_{\text {Periodic Matrix }}
\end{gathered}
$$

Periodic Domain

- Allows us to run for long times without having to have a very long domain.
- Allows us to analyze the properties of our spatial discretization.

CFL, Eigenvalues, and Stability: Fourier Analysis

- Consider: $u_{t}=-c u_{x}, \quad u(0)=u(1)$ (periodic BCs)
- Centered difference formula in space:

$$
\frac{d u_{j}}{d t}=-\frac{c}{2 \Delta x}\left(u_{j+1}-u_{j-1}\right)=\left.C \underline{u}\right|_{j}
$$

- Eigenvector: $u_{j}=e^{i 2 \pi k x_{j}}$.
- Eigenvalue:

$$
\begin{aligned}
C \underline{u}_{j} & =-\frac{c}{2 \Delta x}\left(e^{i 2 \pi k \Delta x}-e^{-i 2 \pi k \Delta x}\right) e^{i 2 \pi k x_{j}} \\
& =-\frac{2 i c}{2 \Delta x} \frac{\left(e^{i 2 \pi k \Delta x}-e^{-i 2 \pi k \Delta x}\right)}{2 i} u_{j} \\
& =\lambda_{k} u_{j} \\
\lambda_{k} & =\frac{-i c}{\Delta x} \sin (2 \pi k \Delta x)
\end{aligned}
$$

CFL, Eigenvalues, and Stability: Fourier Analysis

- Eigenvalue:

$$
\begin{aligned}
\left.C \underline{u}\right|_{j} & =-\frac{c}{2 \Delta x}\left(e^{i 2 \pi k \Delta x}-e^{-i 2 \pi k \Delta x}\right) e^{i 2 \pi k x_{j}} \\
& =-\frac{2 i c}{2 \Delta x} \frac{\left(e^{i 2 \pi k \Delta x}-e^{-i 2 \pi k \Delta x}\right)}{2 i} u_{j} \\
& =\lambda_{k} u_{j} \\
\lambda_{k} & =\frac{-i c}{\Delta x} \sin (2 \pi k \Delta x)
\end{aligned}
$$

- Eigenvalues are purely imaginary, max modulus is

$$
\max _{k}\left|\lambda_{k}\right|=\frac{|c|}{\Delta x}
$$

- For constant c and Δx, we define the CFL for the advection equation as

$$
\mathrm{CFL}=\frac{\Delta t|c|}{\Delta x}
$$

Courant Number, Eigenvalues, and Stability: Fourier Analysis

- For constant c and Δx, we define the CFL for the advection equation as

$$
\mathrm{CFL}=\frac{\Delta t|c|}{\Delta x}
$$

- $\mathrm{CFL}=1$ would correspond to a timestep size where a particle moving at speed c would move one grid spacing in a single timestep.
- For centered finite differences in space, $\mathrm{CFL}=1$ also corresponds $\lambda \Delta t=1$.
- From our IVP stability analysis, we know that we need $|\lambda \Delta t|<.7236$ for AB3 and <2.828 for RK4.
- This would correspond to CFL $<.7236$ and 2.828 , respectively.

CFL, Eigenvalues, and Stability: Fourier Analysis

- MATLAB EXAMPLE: conv_ab3.m

Advection

- For advection, no decay in physical solution.
- Solution is persistent.
- Numerical method is either dispersive, dissipative, or both.
- If $C=-C^{T}$, discrete operator is skew-symmetric (imaginary eigenvalues) and numerical method has no decay (due to spatial error, at least).
- But it will be dispersive.
- We come back to dissipative shortly.
- Long time-integration \longrightarrow accumulation of error.
- Second-order, $O\left(\Delta x^{2}\right)$, accuracy is not sufficient.
- Modulo boundary conditions (or with periodicity), we can easily extend our 2nd-order centered-difference formula to $O\left(\Delta x^{4}\right)$ through Richardson extrapolation.
- Let

$$
\left.C_{h} \mathbf{u}\right|_{j}:=\frac{c}{2 \Delta x}\left[u_{j+1}-u_{j-1}\right]
$$

and

$$
\left.C_{2 h} \mathbf{u}\right|_{j}:=\frac{c}{4 \Delta x}\left[u_{j+2}-u_{j-2}\right]
$$

for $j=1, \ldots, n$ (with wrap for periodic ends).

- Instead of

$$
\frac{d \mathbf{u}}{d t}=-C_{h} \mathbf{u}
$$

now use

$$
\frac{d \mathbf{u}}{d t}=-\left[\frac{4}{3} C_{h} \mathbf{u}-\frac{1}{3} C_{2 h} \mathbf{u}\right]
$$

- For AB3, say,

$$
\begin{aligned}
\mathbf{u}^{k+1} & =\mathbf{u}^{k}+\Delta t\left(\frac{23}{12} \mathbf{f}^{k}-\frac{16}{12} \mathbf{f}^{k-1}+\frac{5}{12} \mathbf{f}^{k-2}\right) \\
\mathbf{f}^{k} & =-\left[\frac{4}{3} C_{h} \mathbf{u}^{k}-\frac{1}{3} C_{2 h} \mathbf{u}^{k}\right]
\end{aligned}
$$

- Don't re-evaluate \mathbf{f}^{k-1} or \mathbf{f}^{k-2}.
- Just re-use the previously computed values.

Numerical Dissipation

Numerical Dissipation

- So far, we've consider only central difference formulas.
- Upwind discretizations offer more stability, through the introduction of numerical dissipation.
- You must be very careful about the wind direction!

Alternative Discretizations for Advection

Periodic Domain: $u_{0} \equiv u_{n}$

- First-order upwinding:

$$
\begin{aligned}
\frac{d u_{j}}{d t}=-\frac{c}{\Delta x}\left(u_{j}-u_{j-1}\right) & \text { if } c>0 \\
\frac{d u_{j}}{d t}=-\frac{c}{\Delta x}\left(u_{j+1}-u_{j}\right) & \text { if } c<0
\end{aligned}
$$

- Questions:
- What is the order of accuracy?
- Do we preserve skew-symmetry?
- Do we have stability?
- Under which conditions?
- Consider $c>0$. With some rearranging, we find:

$$
\begin{aligned}
\frac{d u_{j}}{d t} & =-\frac{c}{\Delta x}\left(u_{j}-u_{j-1}\right) \\
& =-\frac{c}{2 \Delta x}\left(2 u_{j}-2 u_{j-1}\right) \\
& =-\frac{c}{2 \Delta x}\left(u_{j+1}-u_{j+1}+2 u_{j}-2 u_{j-1}\right) \\
& =-\frac{c}{2 \Delta x}\left(\left(u_{j+1}-u_{j-1}\right)+\left(-u_{j+1}+2 u_{j}-u_{j-1}\right)\right) \\
& =-c \frac{u_{j+1}-u_{j-1}}{2 \Delta x}+\frac{c \Delta x}{2} \frac{-u_{j+1}+2 u_{j}-u_{j-1}}{\Delta x^{2}} \\
& =-C \mathbf{u}-\nu_{h} A \mathbf{u}
\end{aligned}
$$

- Here, $\nu_{h}=\frac{c \Delta x}{2}$ is the numerical diffusivity and the term

$$
-\nu_{h} A \mathbf{u}
$$

represents numerical dissipation.

- $\nu_{h}=\frac{c \Delta x}{2} \longrightarrow 0$ as $\Delta x \longrightarrow 0$ (but only linearly in Δx).
- This method is thus first-order, $O(\Delta x)$, accurate in space and dissipative.
- Eigenvalues.
- For our periodic boundary conditions, the eigenvectors are

$$
u_{j}=e^{i 2 \pi k x_{j}} \quad(i:=\sqrt{-1})
$$

- With $\theta:=2 \pi k \Delta x$, we have:

$$
\begin{aligned}
C \mathbf{u} & =\frac{c}{2 \Delta x} \cdot 2 i\left[\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right] e^{i 2 \pi k x_{j}} \\
& =\frac{i c}{\Delta x} \sin (2 \pi k \Delta x) e^{i 2 \pi k x_{j}} \\
\nu_{h} A \mathbf{u} & =\frac{\nu_{h}}{\Delta x^{2}}[2-2 \cos (2 \pi k \Delta x)] e^{i 2 \pi k x_{j}} \\
\lambda(J) & =-\frac{i c}{\Delta x} \sin (2 \pi k \Delta x)-\frac{\nu_{h}}{\Delta x^{2}}(2-2 \cos (2 \pi k \Delta x))
\end{aligned}
$$

- Eigenvalues.
- For our periodic boundary conditions, the eigenvectors are

$$
u_{j}=e^{i 2 \pi k x_{j}} \quad(i:=\sqrt{-1})
$$

- With $\theta:=2 \pi k \Delta x$, we have:

$$
\begin{aligned}
C \mathbf{u} & =\frac{c}{2 \Delta x} \cdot 2 i\left[\frac{e^{i \theta}-e^{-i \theta}}{2 i}\right] e^{i 2 \pi k x_{j}} \\
& =\frac{i c}{\Delta x} \sin (2 \pi k \Delta x) e^{i 2 \pi k x_{j}} . \\
\nu_{h} A \mathbf{u} & =\underbrace{\frac{\nu_{h}}{\Delta x^{2}}[2-2 \cos (2 \pi k \Delta x)] e^{i 2 \pi k x_{j}}}_{\in \mathcal{I} m} \\
\lambda(J) & =\underbrace{-\frac{i c}{\Delta x} \sin (2 \pi k \Delta x)}_{<0, \in \mathbb{R}}-\underbrace{\frac{\nu_{h}}{\Delta x^{2}}(2-2 \cos (2 \pi k \Delta x))}
\end{aligned}
$$

- Thus, the eigenvalues are complex and in the left (stable) half of the complex plane.
- Q: What happens if $c<0$??
- Now, $\nu_{h}<0$ and

$$
\lambda(J)=\underbrace{-\frac{i c}{\Delta x} \sin (2 \pi k \Delta x)}_{\in \mathcal{I} m}-\underbrace{\frac{\nu_{h}}{\Delta x^{2}}(2-2 \cos (2 \pi k \Delta x))}_{>0, \in \mathbb{R}} .
$$

- Here, we will have very rapid instability.
- We must in this case use the one-sided derivative

$$
\begin{equation*}
\frac{d u_{j}}{d t}=-\frac{c}{\Delta x}\left(u_{j+1}-u_{j}\right) \quad \text { if } c<0 \tag{1}
\end{equation*}
$$

- Consider the logic of this statement.
- Suppose we use Euler forward, with $c=1>0$ and $\Delta t=\Delta x$.
- Then, the update step is

$$
\begin{align*}
& \frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\Delta t}=J \mathbf{u}^{n}, \text { or } \tag{2}\\
& \frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=-c \frac{u_{j}^{n}-u_{j-1}^{n}}{\Delta x} \tag{3}
\end{align*}
$$

implying

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\frac{c \Delta t}{\Delta x}\left(u_{j}^{n}-u_{j-1}^{n}\right) . \tag{4}
\end{equation*}
$$

- If our $\mathrm{CFL}=1$, then

$$
\begin{equation*}
u_{j}^{n+1}=u_{j-1}^{n}, \tag{5}
\end{equation*}
$$

which corresponds to a perfect shift of data from the left.

- Being in Illinois, we take our prediction of tomorrow's weather, u_{j}^{n+1}, from today's weather in Iowa, u_{j-1}^{n}.
- Not from Indiana $\left(u_{j+1}^{n}\right)$.

More on 2D Systems Matrics for Poisson Equation

$$
\begin{align*}
-\nabla^{2} u & =f(x, y), \quad \text { plus } \mathrm{BCs} \tag{10}\\
& =-\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
& =-\left(\frac{\delta^{2} u}{\delta x^{2}}+\frac{\delta^{2} u}{\delta y^{2}}\right)+O\left(h^{2}\right),
\end{align*}
$$

where we have substituted the finite difference approximations, assumed to be about the point $\mathbf{x}_{i j}:=\left(x_{i}, y_{j}\right)$,

$$
\begin{align*}
& \frac{\delta^{2} u}{\delta x^{2}}:=\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}} \tag{11}\\
& \frac{\delta^{2} u}{\delta y^{2}}:=\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{\Delta y^{2}}
\end{align*}
$$

with the further assumption of uniform grid spacing, $\Delta x=\Delta y=h$. We'll also consider homogeneous Dirichlet boundary conditions, that is, $\left.u(x, y)\right|_{\partial \Omega} \equiv 0$. The respective unknowns and data in this case are $u_{i j}$ and $f_{i j}$, governed by the following system of equations

$$
\begin{equation*}
-\left(\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{\Delta x^{2}}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{\Delta y^{2}}\right)=f_{i j}, \tag{12}
\end{equation*}
$$

for $i, j \in[1, \ldots, N]^{2}$.
Assuming a lexicographical ordering in which the $i-(x-)$ index advances fastest, the system takes on the following matrix structure for $\Delta x=\Delta y=h$.

Note that $A_{2 D}$ can be expressed as the sum of two systems, one associated with A_{x} coming from $\frac{\delta^{2} u}{\delta x^{2}}$, and one associated with one associated with A_{y} coming from $\frac{\delta^{2} u}{\delta y^{2}}$. Specifically, we can write

$$
\begin{equation*}
A_{2 D}=\left(I_{y} \otimes A_{x}\right)+\left(A_{y} \otimes I_{x}\right) \tag{13}
\end{equation*}
$$

where we have introduced the Kronecker (or tensor) product, \otimes. For two matrices A and B, their Kronecker product $C=A \otimes B$ is defined as the block matrix

$$
C:=\left(\begin{array}{ccccc}
a_{11} B & a_{12} B & \cdots & \cdots & a_{1 n} B \tag{14}\\
a_{21} B & a_{22} B & \cdots & \cdots & a_{2 n} B \\
\vdots & \vdots & & & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & \cdots & a_{m n} B
\end{array}\right)
$$

We will soon explore a few properties of this form, but for now simply note that it allows a clean expression of the discretized Poisson operator in 2D. Consider the following splitting of $A_{2 D}$.

$$
\begin{aligned}
A_{2 D} & =\left(\begin{array}{cccc}
A_{x} & & & \\
& A_{x} & & \\
& & \ddots & \\
& & & A_{x}
\end{array}\right)+\frac{1}{h^{2}}\left(\begin{array}{cccc}
2 I_{x} & -I_{x} & & \\
-I_{x} & 2 I_{x} & \ddots & \\
& \ddots & \ddots & -I_{x} \\
& & -I_{x} & 2 I_{x}
\end{array}\right) \\
& =\left(I_{y} \otimes A_{x}\right)+\left(A_{y} \otimes I_{x}\right)
\end{aligned}
$$

close all; format compact.
\% Kronecker Product Demo
\%
NOTE: It is important to use SPARSE matrices throughout.
Otherwise, your run times will be very long and you will likely run out of memory

Lx=2; Ly=1;
$n x=15$; ny=3; \% Number of _interior_ points
$\mathrm{dx}=\mathrm{Lx} /(\mathrm{nx}+1) ; \mathrm{dy}=\mathrm{Ly} /(\mathrm{ny}+1)$;
\% USE help spdiags
$\mathrm{e}=\operatorname{ones}(\mathrm{nx}, 1) ; \mathrm{Ax}=\operatorname{spdiags}([-\mathrm{e} 2 * e-\mathrm{e}],-1: 1, \mathrm{nx}, \mathrm{nx}) /(\mathrm{dx} * \mathrm{dx})$
e = ones(ny,1); Ay = spdiags([-e 2*e -e], -1:1, ny, ny)/(dy*dy);
Ix=speye(nx); Iy=speye(ny);
$\mathrm{A}=\mathrm{kron}(\mathrm{Iy}, \mathrm{Ax})+\mathrm{kron}(\mathrm{Ay}, \mathrm{Ix})$; $\% \% \%$ FINITE DIFFERENCE STIFFNESS MATRIX
\% A couple of demo cases without the $1 /(d x * d x)$ scaling.

nd= 5 ;

$\mathrm{e}=$ ones(nd,1); Ad $=\operatorname{spdiags}([-\mathrm{e} 2 * \mathrm{e}-\mathrm{e}],-1: 1$, nd, nd)
$T=\operatorname{kron}(I y, A d) ;$ full (T)

nd= 15

e ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd)
T = kron(Iy,Ad); spy(T)
title('I_y \otimes A_x','fontsize',16)
set(gcf,'PaperUnits','normalized');set(gcf,'PaperPosition', [lllll $\left.\left.\begin{array}{lll}0 & 1 & 1\end{array}\right]\right)$ print -dpdf iyax.pdf

pause; figure

nd= 5;
$\mathrm{e}=$ ones(nd,1); Ad $=\operatorname{spdiags}([-\mathrm{e} 2 * \mathrm{e}-\mathrm{e}],-1: 1, \mathrm{nd}, \mathrm{nd})$
$T=\operatorname{kron}(A d, I x) ;$ full (T)
nd= 15 ;
e ones(nd,1); Ad = spdiags([-e 2*e -e], -1:1, nd, nd)
T = kron(Ad,Ix); spy(T)
title('A_y \otimes I_x','fontsize',16)
 print -dpdf ayix.pdf

Note that our finite-difference stiffness matrix in matlab would be written as

$$
A=\operatorname{kron}(I y, A x)+\operatorname{kron}(A y, I x)
$$

where Ax and Ay are formed using the matlab spdiags command (help spdiags), and Iy and Ix are formed using speye.

It is important to use sparse matrices in matlab for these higher-dimensional (2D and 3D) problems or you will run out of memory and it will take very long to solve these problems.

This problem is known in scientific computing and the curse of dimensionality.

1.4 Poisson Equation in \mathbb{R}^{3}

We now extend the 1 D and 2 D concepts to the most important 3 D case. The short story is that the 3D stiffness matrix takes the wonderfully symmetric form

$$
\begin{align*}
A_{3 D} & =\left(I_{z} \otimes A_{2 D}\right)+\left(A_{z} \otimes I_{2 D}\right) \tag{15}\\
& =\left(I_{z} \otimes I_{y} \otimes A_{x}\right)+\left(I_{z} \otimes A_{y} \otimes I_{x}\right)+\left(A_{z} \otimes I_{y} \otimes I_{x}\right) .
\end{align*}
$$

and the discrete system is as before $A_{3 D} \underline{u}=f$. This of course is the form that arises for a finite difference discretization of $-\nabla^{2} u=f$ in $\Omega=[\overline{0}, 1]^{3}, u=0$ on $\partial \Omega$, or, more explicitly,

$$
\begin{equation*}
-\left(\frac{\delta^{2} u}{\delta x^{2}}+\frac{\delta^{2} u}{\delta y^{2}}+\frac{\delta^{2} u}{\delta z^{2}}\right)=f\left(x_{i}, y_{j}, z_{k}\right) \tag{16}
\end{equation*}
$$

with

$$
\begin{equation*}
\left.\frac{\delta^{2} u}{\delta z^{2}}\right|_{i j k}:=\frac{u_{i j, k+1}-2 u_{i j k}+u_{i j, k-1}}{\Delta z^{2}} \tag{17}
\end{equation*}
$$

and equivalent expressions for $\frac{\delta^{2} u}{\delta x^{2}}$ and $\frac{\delta^{2} u}{\delta y^{2}}$.

