
Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Outline

1 Partial Differential Equations

2 Numerical Methods for PDEs

3 Sparse Linear Systems

Michael T. Heath Scientific Computing 2 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Partial Differential Equations

Partial differential equations (PDEs) involve partial
derivatives with respect to more than one independent
variable

Independent variables typically include one or more space
dimensions and possibly time dimension as well

More dimensions complicate problem formulation: we can
have pure initial value problem, pure boundary value
problem, or mixture of both

Equation and boundary data may be defined over irregular
domain

Michael T. Heath Scientific Computing 3 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Partial Differential Equations, continued

For simplicity, we will deal only with single PDEs (as
opposed to systems of several PDEs) with only two
independent variables, either

two space variables, denoted by x and y, or
one space variable denoted by x and one time variable
denoted by t

Partial derivatives with respect to independent variables
are denoted by subscripts, for example

u

t

= @u/@t

u

xy

= @

2
u/@x@y

Michael T. Heath Scientific Computing 4 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Classification of PDEs

Order of PDE is order of highest-order partial derivative
appearing in equation

For example, advection equation is first order

Important second-order PDEs include

Heat equation : u

t

= u

xx

Wave equation : u

tt

= u

xx

Laplace equation : u

xx

+ u

yy

= 0

Michael T. Heath Scientific Computing 8 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Classification of PDEs, continued

Second-order linear PDEs of general form

au

xx

+ bu

xy

+ cu

yy

+ du

x

+ eu

y

+ fu+ g = 0

are classified by value of discriminant b

2 � 4ac

b

2 � 4ac > 0: hyperbolic (e.g., wave equation)

b

2 � 4ac = 0: parabolic (e.g., heat equation)

b

2 � 4ac < 0: elliptic (e.g., Laplace equation)

Michael T. Heath Scientific Computing 9 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Classification of PDEs, continued

Classification of more general PDEs is not so clean and simple,
but roughly speaking

Hyperbolic PDEs describe time-dependent, conservative
physical processes, such as convection, that are not
evolving toward steady state

Parabolic PDEs describe time-dependent, dissipative
physical processes, such as diffusion, that are evolving
toward steady state

Elliptic PDEs describe processes that have already
reached steady state, and hence are time-independent

Michael T. Heath Scientific Computing 10 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values

Michael T. Heath Scientific Computing 11 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values

Michael T. Heath Scientific Computing 11 / 105

Space Time

Example: Poisson Equation in 2D

⌦

@⌦

u = 0

�
✓
@2u

@x2
+

@2u

@y2

◆
= f(x, y) in⌦

u = 0 on @⌦

• Ex 1: If f(x, y) = sin ⇡x sin ⇡y,

u(x, y) =
1

2⇡2
sin ⇡x sin ⇡y

• Ex 2: If f(x, y) = 1,

u(x, y) =
1,1X

k,l odd

16

⇡2kl(k2 + l2)
sin k⇡x sin l⇡y.

– Q: How large must k and l be for “exact” solution to be correct to ✏
M

?

– Spectral collocation would yield u = uexact ± ✏
M

by N ⇡ 15.

Numerical Solution: Finite Di↵erences

i = 0

1 2 3 4 n

x

+ 1

j = 0

1

2

3

4

n

y

+ 1

ui�1,j

ui,j�1

uij ui+1,j

ui,j+1

“5-point finite-di↵erence stencil”

�
✓
@2u

@x2
+

@2u

@y2

◆
⇡

✓
u
i+1,j � 2u

ij

� u
i�1,j

�x2

+
u
i,j+1 � 2u

ij

� u
i,j�1

�y2

◆
= f

ij

i = 1 . . . n
x

j = 1 . . . n
y

• Here, the unknowns are u = [u11, u21, . . . , un

x

,n

y

]T .

• This particular (so-called natural or lexicographical) ordering gives rise to
a banded system matrix for u.

• As in the 1D case, the error is O(�x2) + O(�y2) = O(h2) if we take �x = �y =: h.

• Assuming for simplicity that N = n
x

= n
y

, we have n = N2 unknowns.

-

• For i, j 2 [1, . . . , N]2, the governing finite di↵erence equations are

�
✓
u
i+1,j � 2u

i,j

+ u
i�1,j

�x2
+

u
i,j+1 � 2u

i,j

+ u
i,j�1

�y2

◆
= f

ij

.

• Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the
system matrix has the form

1

h

2

0

BBB@

4 �1 �1
�1 4 �1 �1

�1
. . .

. . .
. . .

. . .
. . . �1

. . .
�1 4 �1

�1 4 �1
. . .

�1 �1 4 �1
. . .

. . . �1
. . .

. . .
. . .

. . .
. . .

. . . �1
. . .

�1 �1 4
. . .

. . .
. . . �1

. . .
. . . �1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . �1

�1 4 �1

�1 �1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . �1
�1 �1 4

1

CCCA

| {z }
A

0

BBB@

u11
u21
...
...

u

N1

u12
u22
...
...

u

N2

...

...

...

...

...

u1N
u2N
...
...

u

NN

1

CCCA

| {z }
u

=

0

BBB@

f11
f21
...
...

f

N1

f12
f22
...
...

f

N2

...

...

...

...

...

f1N
f2N
...
...

f

NN

1

CCCA

| {z }
f

• The system matrix A is

– sparse, with 5 nonzeros per row (good)

– and has a bandwith N (bad).

• The di�culty is that solving Au = f using Gaussian elimination results in signifcant
fill— each of the factors L and U have N3 = n3/2 nonzeros.

• Worse, for 3D problems with N3 unknowns, u = [u111, u211, . . . , un

x

,n

y

,n

z

]T , A is

– sparse, with 7 nonzeros per row (good)

– and has a bandwith N2 (awful).

• In 3D, LU decomposition yields N5=n5/3 nonzeros in L and U .

• The situation can be rescued in 2D with a reordering of the unknowns (e.g., via nested-
dissection) to yield O(n log n) nonzeros in L and U .

• In 3D, nested-dissection yields O(n3/2) nonzeros in the factors. Direct solution is not
scalable for more than two space dimensions.

• The following Matlab examples illustrate the issue of fill:

– fd poisson 2d.m

– fd poisson 3d.m

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

error – 2D

N3

Matrix-Fill for 2D and 3D Poisson, symamd Ordering

• As expected, the error scales like h2 ⇠ 1/N2 in both 2D and 3D.

• The resepctive storage costs (and work per rhs) are ⇠ N3 and N5.

• Alternative orderings are asymptotically better, but the
constants tend to be large.

• We see for N = 80 (n = 6400) a 5⇥ reduction in number
of nonzeros by reording with matlab’s symamd function.

• The requirements for indirect addressing to access elements
of the complacty-stored matrix further adds to overhead.

• Gains tend to be realized only for very large N and are
even less beneficial in 3D.

• Despite this, it’s still a reasonable idea to reorder
in matlab because it’s available and easy to use.

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

error – 2D

N3

• As expected, the error scales like h2
1/N2

in both 2D and 3D.

• The resepctive storage costs (and work per rhs) are ⇠ N3
and N5

.

• Alternative orderings are asymptotically better, but the

constants tend to be large.

• We see for N = 80 (n = 6400) a 5⇥ reduction in number

of nonzeros by reording with matlab’s symamd function.

• The requirements for indirect addressing to access elements

of the complacty-stored matrix further adds to overhead.

• Gains tend to be realized only for very large N and are

even less beneficial in 3D.

• Despite this, it’s still a reasonable idea to reorder

in matlab because it’s available and easy to use.

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

error – 2D

N3

Matrix-Fill for 2D and 3D Poisson, symamd Ordering

• As expected, the error scales like h2
1/N2

in both 2D and 3D.

• The resepctive storage costs (and work per rhs) are ⇠ N3
and N5

.

• Alternative orderings are asymptotically better, but the

constants tend to be large.

• We see for N = 80 (n = 6400) a 5⇥ reduction in number

of nonzeros by reording with matlab’s symamd function.

• The requirements for indirect addressing to access elements

of the complacty-stored matrix further adds to overhead.

• Gains tend to be realized only for very large N and are

even less beneficial in 3D.

• Despite this, it’s still a reasonable idea to reorder

in matlab because it’s available and easy to use.

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

error – 2D

N3

Matrix-Fill for 2D and 3D Poisson, symamd Ordering

• As expected, the error scales like h2
1/N2

in both 2D and 3D.

• The resepctive storage costs (and work per rhs) are ⇠ N3
and N5

.

• Alternative orderings are asymptotically better, but the

constants tend to be large.

• We see for N = 80 (n = 6400) a 5⇥ reduction in number

of nonzeros by reording with matlab’s symamd function.

• The requirements for indirect addressing to access elements

of the complacty-stored matrix further adds to overhead.

• Gains tend to be realized only for very large N and are

even less beneficial in 3D.

• Despite this, it’s still a reasonable idea to reorder

in matlab because it’s available and easy to use.

Matrix-Fill for 2D and 3D Poisson, Lexicographical Ordering

error – 2D, 3D

nnz – 2D

nnz – 3D

error – 2D

N3

Matrix-Fill for 2D Poisson, symamd Ordering

• As expected, the error scales like h2 ⇠ 1/N2 in both 2D and 3D.

• The resepctive storage costs (and work per rhs) are ⇠ N3 and N5.

• Alternative orderings are asymptotically better, but the
constants tend to be large.

• We see for N = 80 (n = 6400) a 5⇥ reduction in number
of nonzeros by reording with matlab’s symamd function.

• The requirements for indirect addressing to access elements
of the complacty-stored matrix further adds to overhead.

• Gains tend to be realized only for very large N and are
even less beneficial in 3D.

• Despite this, it’s still a reasonable idea to reorder
in matlab because it’s available and easy to use.

Iterative Solvers

• The curse of dimensionality for d > 2 resulted in a move towards iterative (rather

than direct-, LU -based) linear solvers once computers became fast enough to tackle 3D

problems in the mid-80s.

• With iterative solvers, factorization

Au = f =) u = A�1f = U�1L�1f

is replaced by, say,

uk+1 = uk + M�1
(f � Auk) ,

which only requires matrix-vector products.

• With ek := u � uk, we have

ek+1 =

�
I � M�1A

�
ek, (as we’ve seen before).

• This is known as Richardson iteration.

• For the particular case M = D = diag(A), it is Jacobi iteration.

• We can derive Jacobi iteration (and multigrid by looking at a parabolic PDE, known as

the (unsteady) heat equation. (The Poisson equation is sometimes referred to as the

steady-state heat equation.)

• The intrinsic advantage of iterative solvers is that there is no fill associated with matrix
factorization.

• Often one does not even construct the matrix. Rather, we simply evaluate the residual
rk := f � Auk and set uk+1

= uk +M�1rk.

• For a sparse matrix A, the operation count is O(n) per iteration.

• Assuming the preconditioner cost is also sparse, the overall cost is O(n k
max

), where
k
max

is the number of iterations required to reach a desired tolerance.

• The choice of iteration (Richardson, conjugate gradient, GMRES) can greatly influence
k
max

.

• Even more significant is the choice of M .

• Usually, one seeks an M such that the cost of solving Mz = r is O(n) and that
k
max

= O(1). That is, the iteration count is bounded, independent of n.

• The overall algorithm is therefore O(n), which is optimal.

Iterative Solvers - Linear Elliptic Problems

• PDEs give rise to large sparse linear systems of the form

Au = f .

Here, we’ll take A to be the (SPD) matrix arising from finite di↵erences
applied to the Poisson equation

�
✓
@2u

@x2
+

@2u

@y2

◆
= f(x, y) x, y 2 [0, 1]2, u = 0 on @⌦

�
✓
�2u

�x2
+

�2u

�y2

◆

ij

⇡ f |
ij

,

• Assuming uniform spacing in x and y we have

�2u

�x2
:=

u
i+1,j

� 2u
ij

+ u
i�1,j

h2

and
�2u

�y2
:=

u
i,j+1

� 2u
ij

+ u
i,j�1

h2

• Our finite di↵erence formula is thus,

1

h2

(u
i+1,j

+ u
i�1,j

� 4u
ij

+ u
i,j+1

+ u
i,j�1

) = f
ij

.

• Rearranging, we can solve for u
ij

:

4

h2

u
ij

= f
ij

+
1

h2

(u
i+1,j

+ u
i�1,j

+ u
i,j+1

+ u
i,j�1

)

u
ij

=
h2

4
f
ij

+ +
1

4
(u

i+1,j

+ u
i�1,j

+ u
i,j+1

+ u
i,j�1

)

Iterative Solvers - Linear Elliptic Problems

• PDEs give rise to large sparse linear systems of the form

Au = f .

Here, we’ll take A to be the (SPD) matrix arising from finite di↵erences
applied to the Poisson equation

�
✓
@2u

@x2
+

@2u

@y2

◆
= f(x, y) x, y 2 [0, 1]2, u = 0 on @⌦

�
✓
�2u

�x2
+

�2u

�y2

◆

ij

⇡ f |
ij

,

• Assuming uniform spacing in x and y we have

�2u

�x2
:=

u
i+1,j

� 2u
ij

+ u
i�1,j

h2

and
�2u

�y2
:=

u
i,j+1

� 2u
ij

+ u
i,j�1

h2

• Our finite di↵erence formula is thus,

1

h2

(u
i+1,j

+ u
i�1,j

� 4u
ij

+ u
i,j+1

+ u
i,j�1

) = f
ij

.

• Rearranging, we can solve for u
ij

:

4

h2

u
ij

= f
ij

+
1

h2

(u
i+1,j

+ u
i�1,j

+ u
i,j+1

+ u
i,j�1

)

u
ij

=
h2

4
f
ij

+ +
1

4
(u

i+1,j

+ u
i�1,j

+ u
i,j+1

+ u
i,j�1

)

• Jacobi iteration uses the preceding expression as a fixed-point iteration:

uk+1

ij

=
h2

4
f
ij

+
1

4

�
uk
i+1,j

+ uk
i�1,j

+ uk
i,j+1

+ uk
i,j�1

�

=
h2

4
f
ij

+ average of current neighbor values

• Note that this is analogous to

uk+1

ij

= uk
ij

+
h2

4


f
ij

+
1

h2

�
uk
i+1,j

+ uk
i�1,j

� 4uk
ij

+ uk
i,j+1

+ uk
i,j�1

��

u

k+1

= u

k

+ �t (f � Au
k

) , �t :=
h2

4
,

which is Euler forward applied to

du

dt
= �Au + f .

• We note that we have stability if |��t| < 2

• Recall that the eigenvalues for the 1D di↵usion operator are

�
j

=
2

h2

(1� cos j⇡�x) <
4

h2

• In 2D, we pick up contributions from both �

2
u

�x

2 and �

2
u

�y

2 , so

max |�| <
8

h2

and we have stability since

max |��t| <
8

h2

h2

4
= 2

• So, Jacobi iteration is equivalent to solving Au = f by time marching
du
dt

= �Au + f using EF with maximum allowable timestep size,

�t =
h2

4
.

Jacobi Iteration in Matrix Form

• Our unsteady heat equation has the matrix form

u

k+1

= u

k

+ �t (f � Au
k

)

• For variable diagonal entries, Richardson iteration is

u

k+1

= u

k

+ �M�1 (f � Au
k

)

• If � = 1 and M = D�1 =diag(A) [d
ii

= 1/a
ii

, d
ij

= 0, i 6= j],
we have standard Jacobi iteration.

• If � < 1 we have damped Jacobi.

• M is generally known as a smoother or a preconditioner,
depending on context.

Rate of Convergence for Jacobi Iteration

• Let e
k

:= u� u

k

.

• Since Au = f , we have

u

k+1

= u

k

+ �t (Au� Au
k

)

�u = �u

��� � ����������

�e

k+1

= �e

k

� ��tAe
k

�e

k+1

= � (I � ��tA) e
k

e

k

= (I � ��tA)k e
0

= (I � ��tA)k u if u
0

= 0.

• If � < 1, then the high wavenumber error components will decay because
��t will be well within the stability region for EF.

• The low-wavenumber components of the solution (and error) evolve like
e����tk, because these will be well-resolved in time by Euler forward.

• Thus, we can anticipate

||e
k

|| ⇡ ||u||e��min��tk

with �
min

⇡ 2⇡2 (for 2D).

• If � ⇡ 1, we have

||e
k

|| ⇡ ||u||e�2⇡

2
(h

2
/4)k  tol

• Example, find the number of iterations when tol=10�12.

e�(⇡

2
h

2
/4)k ⇡ 10�12

�(⇡2h2/4)k ⇡ ln 10�12 ⇡ 24 (27.6...)

k ⇡ 28 · 2
⇡2h2

⇡ 6N 2

Here, N=number of points in each direction.

Recap

• Low-wavenumber components decay at a fixed rate: e��min�tk.

• Stability mandates �t < h2/4 = 1/4(N + 1)�2.

• Number of steps scales like N 2.

• Note, if � = 1, then highest and lowest wavenumber components
decay at same rate.

• If 1

2

< � < 1, high wavenumber components of error decay very fast.
We say that damped Jacobi iteration is a smoother.

Example: 1D Jacobi Iteration

Solution after
1 iteration

Solution after
5 itierations

Error after 1
iteration

Error after 5
itierations

Observations:

• Error, ek is smooth after just a few iterations:

– Error components are ⇡ ûje
�j2kh2⇡2/4

sin k⇡xj, and components

for j > 1 rapidly go to zero.

• Exact solution is u = uk + ek (ek unknown, but smooth).

• Error satisfies, and can be computed from,

Aek = rk (:= f � Auk = Au � Auk = Aek) .

• These observations suggest that the error can be well approximated

on a coarser grid and added back to uk to improve the current guess.

• The two steps, smooth and coarse-grid correction are at the heart of

one of the fastest iteration strategies, known as multigrid.

Multigrid:

• Solve Aek = rk approximately on a coarse grid and set

˜uk = uk +

˜ek.

• Approximation strategy is similar to least squares. Let

˜ek = V ec, and

AV ec ⇡ r,

where V is an n⇥ nc matrix with nc ⇡ n/2.

• Typically, columns of V interpolate coarse point values to their mid-

points.

• Most common approach (for A SPD) is to require ec to solve

V T
[AV ec � r] = 0

=) ˜ek = V
�
V TAV

��1
V T r = V

�
V TAV

��1
V T A ek.

• For A SPD,

˜ek is the A-orthogonal projection of ek onto R(V).

An example of V for n = 5 and nc=2 is

V =

2

66664

1
2
1

1
2

1
2
1

1
2

3

77775 +

+ + +

+

i = 0 1 2 3 4 5 n
x

+ 1

Coarse-to-fine interpolation

poisson_mg.m demo

Example: Damped Jacobi (Richardson) Iteration

Solution after
1 iteration

Solution after
5 itierations

Error after 1
iteration

Error after 5
itierations

Multigrid Summary – Main Ideas

Solution after
5 iterations

Error after 5
iterations

Multigrid Summary – Main Ideas:

• Take a few damped-Jacobi steps (smoothing the error), to get uk.

• Approximate this smooth error, ek := u � uk, on a coarser grid.

• Exact error satisfies

Aek = Au � Auk = f � Au =: rk.

• Let ef := V ec be the interpolant of ec, the coarse-grid approximation to ek.

• ef is closest element in R(V) to ek (in the A-norm), given by the projection:

ef = V
�
V TAV

��1
V TAek = V

�
Ac)

�1
�
V T

rk.

• Update uk with the coarse-grid correction: uk � uk + ef .

• Smooth again and repeat.

Example: Two-Level Multigrid

Solution after
1 iteration

Solution after
5 itierations

Error after 1
iteration

Error after 5
itierations

Example: Two-Level Multigrid

Solution after
1 iteration

Iteration
History

Error after 1
iteration

Error after 5
itierations

Multigrid Comments

❑  Smoothing can be improved using under-relaxation (¾ = 2/3 is optimal for 1D case).
❑  Basically – want more of the high-end error spectrum to be damped.

❑  System in Ac is less expensive to solve, but is typically best solved by repeating the smooth/
coarse-grid correct pair on yet another level down.

❑  Can recur until nc ~ 1, at which point system is easy to solve.

❑  Typical MG complexity is O(n) or O(n log n), with very good constants in higher space
dimensions (Nc = N/2 à nc = n/8 in 3D).

❑  For high aspect-ratio cells, variable coefficients, etc., smoothing and coarsening strategies
require more care, so this continues to be an active research area.

Stability Region for Euler’s Method

 | |
-2 -1

Stable

Unstable

Region where

|1 + �h| < 1.

1

Growth Factors for Real ̧

¸¢t ¸¢t ¸¢t

G

❑  Each growth factor approximates e¸¢t for ¸¢t à 0

❑  For EF, |G| is not bounded by 1

❑  For Trapezoidal Rule, local (small¸¢t) approximation is O(¸¢t2), but
|G| à -1 as ¸¢t à -1 . [Trapezoid method is not L-stable.]

❑  BDF2 will give 2nd-order accuracy, stability, and |G|à0 as ¸¢t à -1 .

e¸¢t

G

Fast Solvers: Iterative Methods

• Consider solution of Ax = b, with A and n⇥ n matrix.

• The key motivations/requirements for choosing an iterative
approach over a direct solver are

– Direct solver is taking a long time (cost scales as n3

– Matrix-vector products, w = Ax, are inexpensive (⌧ n2).

• Typically, A is sparse or has a fast factorization.

– A is well-conditioned or there exists a good preconditioner,
M ⇠ A such that (M�1A) is relatively small.

– Example: If A is symmetric positive definite (SPD), (A) = �n/�1

.
• For A = 1D finite-di↵erence matrix (n = N � 1),

�n ⇠ 4N2

�
1

⇠ ⇡2

)
 ⇠ 4N2

⇡2

.

• For A = spectral (Nth-order WRT), (A) ⇠ O(N3).

Iterative Method I: Ax = b

Richardson Iteration (Preconditioner, M):

x
0

= 0

xk = xk�1

+ M�1

�
b � Axk�1

�
.

• Example: M = �tI, �t = a number.

xk = xk�1

+ �t
�
b � Axk�1

�

xk � xk�1

�t
= �Axk�1

+ b . . . Euler Forward.

Maximal �t determined by max (magnitude) eigenvalue of A.

Jacobi Iteration:

• Jacobi = Richardson with M = �D,

D := diag(A)
� = 1: standard Jacobi
� < 1: damped Jacobi (useful for multigrid)

• Example:

A = 1
h2

2

666666664

2 �1

�1 2 �1

�1
.

. �1

�1 2

3

777777775

• M�1 =
h2

2
I = “�tI”.

xk = xk�1

+ �t
�
b � Axk�1

�

�t =
h2

2
.

• Recall, max �(A) = 4N2 ⇡ 4

h2

��t =
h2

2
· 4

h2

= 2.

• Largest possible �t!

What About Costs??

• Cost = (number of iterations) ⇥ (cost-per-iteration).

• Number of iterations (Jacobi):

• Rel. Error ⇠ e��1T , �
1

⇠ ⇡2.

⇠ e�⇡2T ⇡ 10�10 (say)

• � ⇡2 T ⇡ �10 ln 10

T ⇡ 10

⇡2

ln 10 ⇡ 2
�
ln e2 = 2

�
.

• # iterations ⇡ T

�t
=

2

h2/2
⇡ 1

h2

⇡ N2.

Consider 3D –

• Similar analysis yields same conclusion: # iter ⇠ N2 ⇠ 1

h2

.

• Matrix size: n = N3 unknowns (N ⇥N ⇥N grid in 3D).

• 7 nonzeros per row –

– r = b � Ax: 14n = 14N3 ops.

– Total cost ⇡ 14N5.

– Versus matrix factorization ⇡ N6 or N7.

What About Costs??

• Cost = (number of iterations) ⇥ (cost-per-iteration).

• Number of iterations (Jacobi):

• Rel. Error ⇠ e��1T , �
1

⇠ ⇡2.

⇠ e�⇡2T ⇡ 10�10 (say)

• � ⇡2 T ⇡ �10 ln 10

T ⇡ 10

⇡2

ln 10 ⇡ 2
�
ln e2 = 2

�
.

• # iterations ⇡ T

�t
=

2

h2/2
⇡ 1

h2

⇡ N2.

Consider 3D –

• Similar analysis yields same conclusion: # iter ⇠ N2 ⇠ 1

h2

.

• Matrix size: n = N3 unknowns (N ⇥N ⇥N grid in 3D).

• 7 nonzeros per row –

– r = b � Ax: 14n = 14N3 ops.

– Total cost ⇡ 14N5.

– Versus matrix factorization ⇡ N6 or N7.

Time Dependent Problems

• We’ll consider two examples: di↵usion (heat equation) and advection.

heat equation:

@u

@t

= ⌫

@

2
u

@x

2
+ BCs and IC

advection:

@u

@t

= �c

@u

@x

+ BCs and IC

@

2
u

@x

2
< 0 =) @u

@t

< 0

@

2
u

@x

2
> 0 =) @u

@t

> 0

@

2
u

@x

2
> 0

� + �

@

2
u

@x

2
< 0 =) @u

@t

< 0

@

2
u

@x

2
> 0 =) @u

@t

> 0

@

2
u

@x

2
> 0

� + �

@

2
u

@x

2
< 0 =) @u

@t

< 0

@

2
u

@x

2
> 0 =) @u

@t

> 0

@

2
u

@x

2
> 0

� + �

Heat Equation:
@u

@t

= ⌫

@

2
u

@x

2
, ⌫ > 0

• For the heat equation, the solution evolves in the direction of

local curvature.

– If the the solution is locally concave down, u decreases there.

– If the the solution is concave up, u increases.

Example Solutions (eigenfunctions): u

t

= ⌫u

xx

, u(0) = u(1) = 0

u(x, t) = û(t) sin ⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫⇡

2
û sin ⇡x

dû

dt

= �⌫⇡

2
û

û = e

�⌫⇡2t
û(0)

u(x, t) = û(t) sin 10⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫100⇡

2
û sin ⇡x

dû

dt

= �⌫100⇡

2
û

û = e

�⌫100⇡2t
û(0)

(1) + 0.5(2)

Example Solutions (eigenfunctions): u

t

= ⌫u

xx

, u(0) = u(1) = 0

u(x, t) = û(t) sin ⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫⇡

2
û sin ⇡x

dû

dt

= �⌫⇡

2
û

û = e

�⌫⇡2t
û(0)

u(x, t) = û(t) sin 10⇡x

@u

@t

=

dû

dt

sin ⇡x = �⌫100⇡

2
û sin ⇡x

dû

dt

= �⌫100⇡

2
û

û = e

�⌫100⇡2t
û(0)

�! Very rapid decay.

(1) + 0.5(2)

Time Stepping for Di↵usion Equation:

• Recall, with boundary conditions u(0) = u(1) = 0, the finite di↵erence
operator

Au = � ⌫

h

2
[u

j+1 � u

j

� u

j�1]

with h := 1/(n+ 1) has eigenvalues in the interval [0,M] with

M = max
k

�

k

= max
k

2⌫

h

2
[1 � cos k⇡h] ⇠ 4

h

2

• Our ODE is u
t

= �Au, so we are concerned with ��

k

.

• With Euler Forward, we require |��t| < 2 for stability,

– �! �t <

h

2

2

– no matter how smooth the initial condition.

• This intrinsic sti↵ness motivates the use of implicit methods for the heat
equation (BDF2 is a good one).

• matlab example: heat1d.mheat1d_ef.m and heat1d_eb.m

Better Iterative Methods

• Jacobi Iteration is the simplest but certainly not the best iterative strategy.

• Can improve in two ways:

– Choose better preconditioner, M (e.g., multigrid)

– Compute projection of x onto approximation space

� Best fit approximation.

� Conjugate gradient (CG) iteration

� GMRES

• Can always combine preconditioning and projection.

• We’ll look briefly at preconditioned CG.

Preconditioned Projection Methods

• Note: Richardson Iteration does the following:

xk = xk�1

+ M�1

�
b � Axk�1

�

=
�
I � M�1A

�
xk + M�1b

x
0

= 0

x
1

= M�1b

x
2

=
�
I � M�1A

�
M�1b + M�1b 2 lP

1

(M�1A)M�1b

x
3

=
h�
I � M�1A

�
2

+
�
I � M�1A

�
+ I

i
M�1b 2 lP

2

(M�1A)M�1b

xk 2 Kk(M
�1A, M�1b) := lPk�1

(M�1A)M�1b

2 Krylov subspace w.r.t. M�1A and M�1b.

• That is, xk is a linear combination of the vectors in Kk(M
�1A, M�1b).

• For any matrix Q and vector v, we define the Krylov subspace,

Kk(Q, v) := span

�
v, Qv, Q2v, . . . , Qk�1v

⌘ lPk�1

(Q)v,

which is the space of polynomials of degree  (k � 1) in the matrix Q times v.

Conjugate Gradient Iteration

• CG or PCG seeks to find xk 2 Kk that is the closest (best fit) approximation to x.

• The error is A-orthogonal to Kk, i.e., xk is the projection of x onto Kk.

XXXXXXXXXXXXXXXXXX

������������XXXXXXXXXXXXXXXXXX

������������A
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:6

-Kk

ek

xk

x

• This works if A (and M) are SPD.

• Otherwise, use (say) GMRES, which finds the best fit in ATA-norm,

||v|| :=
�
vTATAv

� 1
2 .

One way (familiar, but not best) to compute the projection:

• Let Vk = [v
1

v
2

. . . vk] be the matrix whose columns span Kk.

• Note, the range of the matrix Vk, R(Vk) ⌘ Kk.

• Set xk =
kX

j=1

�j vj = Vk �.

• Orthogonality condition, error ?A R(Vk),

vTi (Axk � Ax) = 0, i = 1, . . . , k

V T
k AVk� = V T

k Ax = V T
k b.

• Define Ak := V T
k AVk – SPD.

� = A�1

k V T
k b

xk = Vk�

)
computable,

= VkA
�1

k V T
k b

= Vk

�
V T
k AVk

��1

V T
k b

= Vk

�
V T
k AVk

��1

V T
k Ax.

• Projection of x onto R(Vk) in the A-norm.

• Requires:

– k matrix vector products in (M�1A)

– Usually: k matvecs in A, k “solves” of Mz = r.

– Solution of small k ⇥ k (e.g., 30⇥ 30) linear system.

– Recombination of basis vectors.

One way (familiar, but not best) to compute the projection:

• Let Vk = [v
1

v
2

. . . vk] be the matrix whose columns span Kk.

• Note, the range of the matrix Vk, R(Vk) ⌘ Kk.

• Set xk =
kX

j=1

�j vj = Vk �.

• Orthogonality condition, error ?A R(Vk),

vTi (Axk � Ax) = 0, i = 1, . . . , k

V T
k AVk� = V T

k Ax = V T
k b.

• Define Ak := V T
k AVk – SPD.

� = A�1

k V T
k b

xk = Vk�

)
computable,

= VkA
�1

k V T
k b

= Vk

�
V T
k AVk

��1

V T
k b

= Vk

�
V T
k AVk

��1

V T
k Ax.

• Projection of x onto R(Vk) in the A-norm.

• Requires:

– k matrix vector products in (M�1A)

– Usually: k matvecs in A, k “solves” of Mz = r.

– Solution of small k ⇥ k (e.g., 30⇥ 30) linear system.

– Recombination of basis vectors.

Benefits:

• # iters scales as
p
(M�1A).

• In our earlier examples with M = I,

(A) =
�
max

�
min

=
4N2

⇡2

.

• Now, # iters ⇠ N , not N2 !

• Cost – 3D Poisson example (still no preconditioning): N4 ⌧ N5.

Conjugate Gradient Algorithm:

Solve Ax = b with x0 = 0.

• Initialize x = 0, r = b, ⇢0 = 1 p = 0.

• for k = 1, . . . ,

Solve Mz = r

⇢1 = ⇢0

⇢0 = rTz

� = ⇢0/⇢1

p = z + �p

w = Ap

� = wTp

↵ = ⇢0/�

x = x + ↵p

r = r � ↵w

Stop when ||r|| < tol.

end;

Time-Dependent Problems

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Example: Advection Equation

Advection equation

u

t

= �c u

x

where c is nonzero constant

Unique solution is determined by initial condition

u(0, x) = u

0

(x), �1 < x < 1
where u

0

is given function defined on R

We seek solution u(t, x) for t � 0 and all x 2 R

From chain rule, solution is given by u(t, x) = u

0

(x� c t)

Solution is initial function u

0

shifted by c t to right if c > 0, or
to left if c < 0

Michael T. Heath Scientific Computing 5 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Example, continued

Typical solution of advection equation, with initial function
“advected” (shifted) over time < interactive example >

Michael T. Heath Scientific Computing 6 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Characteristics
Characteristics for PDE are level curves of solution

For advection equation u

t

= �c u

x

, characteristics are
straight lines of slope c

Characteristics determine where boundary conditions can
or must be imposed for problem to be well-posed

Michael T. Heath Scientific Computing 7 / 105

Matlab Demo: Convection

Matlab Demo: Convection

Time Stepping for Advection Equation: @u

@t

= �c

@u

@x

• Unlike the di↵usion equation, which smears out the initial condition
(with high wavenumber components decaying particularly fast), the ad-
vection equation simply moves things around, with no decay.

• This property is evidenced by the spatial operator having purely (or close
to purely) imaginary eigenvalues.

• Preserving high-wavenumber content (in space) for all time makes this
problem particularly challenging.

– There is always some spatial discretization error.

– Its e↵ects accumulate over time (with no decay of the error).

– For su�ciently large final time T any fixed grid (i.e., fixed n) simu-
lation for general problems will eventually have too much error.

– Long time-integrations, therefore, typically require relatively fine
meshes and/or high-order spatial discretizations.

CFL, Eigenvalues, and Stability: Fourier Analysis
• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

C = � 1

2�x

2

66666664

0 1 �1

�1 0 1

�1

.

.

.

.

.

.

.

.

.

.

.

.

1

1 �1 0

3

77777775

Periodic Matrix

CFL, Eigenvalues, and Stability: Fourier Analysis

• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

• Eigenvector: u

j

= e

i2⇡kxj
.

• Eigenvalue:

C u|
j

= � c

2�x

�
e

i2⇡k�x � e

�i2⇡k�x

�
e

i2⇡kxj

= � 2ic

2�x

�
e

i2⇡k�x � e

�i2⇡k�x

�

2i

u

j

= �

k

u

j

�

k

=

�ic

�x

sin(2⇡k�x)

• Eigenvalues are purely imaginary, max modulus is

max

k

|�
k

| =

|c|
�x

• For constant c and �x, we define the CFL for the advection

equation as

CFL =

�t|c|
�x

.

• CFL=1 would correspond to a timestep size where a particle

moving at speed c would move one grid spacing in a single

timestep.

• For centered finite di↵erences in space, CFL=1 also corresponds

��t = 1.

1

CFL, Eigenvalues, and Stability: Fourier Analysis

• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

• Eigenvector: u

j

= e

i2⇡kxj
.

• Eigenvalue:

C u|
j

= � c

2�x

�
e

i2⇡k�x � e

�i2⇡k�x

�
e

i2⇡kxj

= � 2ic

2�x

�
e

i2⇡k�x � e

�i2⇡k�x

�

2i

u

j

= �

k

u

j

�

k

=

�ic

�x

sin(2⇡k�x)

• Eigenvalues are purely imaginary, max modulus is

max

k

|�
k

| =

|c|
�x

• For constant c and �x, we define the CFL for the advection

equation as

CFL =

�t|c|
�x

.

• CFL=1 would correspond to a timestep size where a particle

moving at speed c would move one grid spacing in a single

timestep.

• For centered finite di↵erences in space, CFL=1 also corresponds

��t = 1.

1

Courant Number

Courant Number, Eigenvalues, and Stability: Fourier Analysis

• Consider: u

t

= �cu

x

, u(0) = u(1) (periodic BCs)

• Centered di↵erence formula in space:

du

j

dt

= � c

2�x

(u

j+1 � u

j�1) = C u|
j

• Eigenvector: u

j

= e

i2⇡kxj
.

• Eigenvalue:

C u|
j

= � c

2�x

�
e

i2⇡kxj+1 � e

i2⇡kxj�1
�
e

i2⇡kxj

= �

k

u

j

�

k

= � c

2�x

sin 2⇡k�x

2i

=

ic

�x

sin(2⇡k�x)

• Eigenvalues are purely imaginary, max modulus is

max

k

|�
k

| =

|c|
�x

• For constant c and �x, we define the CFL for the advection

equation as

CFL =

�t|c|
�x

.

• CFL=1 would correspond to a timestep size where a particle

moving at speed c would move one grid spacing in a single

timestep.

• For centered finite di↵erences in space, CFL=1 also corresponds

��t = 1.

• From our IVP stability analysis, we know that we need

|��t| < .7236 for AB3 and < 2.828 for RK4.

• This would correspond to CFL < .7236 and 2.828, respectively.

1

CFL, Eigenvalues, and Stability: Fourier Analysis

❑  MATLAB EXAMPLE: conv_ab3.m

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values

Michael T. Heath Scientific Computing 11 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Time-Dependent Problems

Time-dependent PDEs usually involve both initial values
and boundary values

Michael T. Heath Scientific Computing 11 / 105

Space Time

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Methods

One way to solve time-dependent PDE numerically is to
discretize in space but leave time variable continuous

Result is system of ODEs that can then be solved by
methods previously discussed

For example, consider heat equation

u

t

= c u

xx

, 0  x  1, t � 0

with initial condition

u(0, x) = f(x), 0  x  1

and boundary conditions

u(t, 0) = 0, u(t, 1) = 0, t � 0

Michael T. Heath Scientific Computing 12 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Finite Difference Method

Define spatial mesh points x

i

= i�x, i = 0, . . . , n+ 1,
where �x = 1/(n+ 1)

Replace derivative u

xx

by finite difference approximation

u

xx

(t, x

i

) ⇡ u(t, x

i+1

)� 2u(t, x

i

) + u(t, x

i�1

)

(�x)

2

Result is system of ODEs

y

0
i

(t) =

c

(�x)

2

(y

i+1

(t)� 2y

i

(t) + y

i�1

(t)) , i = 1, . . . , n

where y

i

(t) ⇡ u(t, x

i

)

From boundary conditions, y
0

(t) and y

n+1

(t) are identically
zero, and from initial conditions, y

i

(0) = f(x

i

), i = 1, . . . , n

We can therefore use ODE method to solve IVP for this
system — this approach is called Method of Lines

Michael T. Heath Scientific Computing 13 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Finite Difference Method

Define spatial mesh points x

i

= i�x, i = 0, . . . , n+ 1,
where �x = 1/(n+ 1)

Replace derivative u

xx

by finite difference approximation

u

xx

(t, x

i

) ⇡ u(t, x

i+1

)� 2u(t, x

i

) + u(t, x

i�1

)

(�x)

2

Result is system of ODEs

y

0
i

(t) =

c

(�x)

2

(y

i+1

(t)� 2y

i

(t) + y

i�1

(t)) , i = 1, . . . , n

where y

i

(t) ⇡ u(t, x

i

)

From boundary conditions, y
0

(t) and y

n+1

(t) are identically
zero, and from initial conditions, y

i

(0) = f(x

i

), i = 1, . . . , n

We can therefore use ODE method to solve IVP for this
system — this approach is called Method of Lines

Michael T. Heath Scientific Computing 13 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Method of Lines

Method of lines uses ODE solver to compute
cross-sections of solution surface over space-time plane
along series of lines, each parallel to time axis and
corresponding to discrete spatial mesh point

Michael T. Heath Scientific Computing 14 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Method of Lines

Method of lines uses ODE solver to compute
cross-sections of solution surface over space-time plane
along series of lines, each parallel to time axis and
corresponding to discrete spatial mesh point

Michael T. Heath Scientific Computing 14 / 105

n coupled ODEs

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Stiffness

Semidiscrete system of ODEs just derived can be written
in matrix form

y

0
=

c

(�x)

2

2

666664

�2 1 0 · · · 0

1 �2 1 · · · 0

0 1 �2 · · · 0

...
0 · · · 0 1 �2

3

777775
y = Ay

Jacobian matrix A of this system has eigenvalues between
�4c/(�x)

2 and 0, which makes ODE very stiff as spatial
mesh size �x becomes small

This stiffness, which is typical of ODEs derived from PDEs,
must be taken into account in choosing ODE method for
solving semidiscrete system

Michael T. Heath Scientific Computing 15 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Collocation Method

Spatial discretization to convert PDE into system of ODEs
can also be done by spectral or finite element approach

Approximate solution is expressed as linear combination of
basis functions, but with time dependent coefficients

Thus, we seek solution of form

u(t, x) ⇡ v(t, x,↵(t)) =

nX

j=1

↵

j

(t)�

j

(x)

where �

j

(x) are suitably chosen basis functions

If we use collocation, then we substitute this approximation
into PDE and require that equation be satisfied exactly at
discrete set of points x

i

Michael T. Heath Scientific Computing 16 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Collocation, continued

For heat equation, this yields system of ODEs

nX

j=1

↵

0
j

(t)�

j

(x

i

) = c

nX

j=1

↵

j

(t)�

00
j

(x

i

)

whose solution is set of coefficient functions ↵

i

(t) that
determine approximate solution to PDE

Implicit form of this system is not explicit form required by
standard ODE methods, so we define n⇥ n matrices M

and N by
m

ij

= �

j

(x

i

), n

ij

= �

00
j

(x

i

)

Michael T. Heath Scientific Computing 17 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Collocation, continued

Assuming M is nonsingular, we then obtain system of
ODEs

↵

0
(t) = cM

�1

N↵(t)

which is in form suitable for solution with standard ODE
software

As usual, M need not be inverted explicitly, but merely
used to solve linear systems

Initial condition for ODE can be obtained by requiring
solution to satisfy given initial condition for PDE at mesh
points x

i

Matrices involved in this method will be sparse if basis
functions are “local,” such as B-splines

Michael T. Heath Scientific Computing 18 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Semidiscrete Collocation, continued

Unlike finite difference method, spectral or finite element
method does not produce approximate values of solution u

directly, but rather it generates representation of
approximate solution as linear combination of basis
functions
Basis functions depend only on spatial variable, but
coefficients of linear combination (given by solution to
system of ODEs) are time dependent
Thus, for any given time t, corresponding linear
combination of basis functions generates cross section of
solution surface parallel to spatial axis
As with finite difference methods, systems of ODEs arising
from semidiscretization of PDE by spectral or finite element
methods tend to be stiff

Michael T. Heath Scientific Computing 19 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Fully Discrete Methods

Fully discrete methods for PDEs discretize in both time
and space dimensions

In fully discrete finite difference method, we
replace continuous domain of equation by discrete mesh of
points
replace derivatives in PDE by finite difference
approximations
seek numerical solution as table of approximate values at
selected points in space and time

Michael T. Heath Scientific Computing 20 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Fully Discrete Methods, continued

In two dimensions (one space and one time), resulting
approximate solution values represent points on solution
surface over problem domain in space-time plane

Accuracy of approximate solution depends on step sizes in
both space and time

Replacement of all partial derivatives by finite differences
results in system of algebraic equations for unknown
solution at discrete set of sample points

Discrete system may be linear or nonlinear, depending on
underlying PDE

Michael T. Heath Scientific Computing 21 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Fully Discrete Methods, continued

With initial-value problem, solution is obtained by starting
with initial values along boundary of problem domain and
marching forward in time step by step, generating
successive rows in solution table

Time-stepping procedure may be explicit or implicit,
depending on whether formula for solution values at next
time step involves only past information

We might expect to obtain arbitrarily good accuracy by
taking sufficiently small step sizes in time and space

Time and space step sizes cannot always be chosen
independently of each other, however

Michael T. Heath Scientific Computing 22 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Example: Heat Equation

Consider heat equation

u

t

= c u

xx

, 0  x  1, t � 0

with initial and boundary conditions

u(0, x) = f(x), u(t, 0) = ↵, u(t, 1) = �

Define spatial mesh points x

i

= i�x, i = 0, 1, . . . , n+ 1,
where �x = 1/(n+ 1), and temporal mesh points
t

k

= k�t, for suitably chosen �t

Let uk
i

denote approximate solution at (t
k

, x

i

)

Michael T. Heath Scientific Computing 23 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Heat Equation, continued

Replacing u

t

by forward difference in time and u

xx

by
centered difference in space, we obtain

u

k+1

i

� u

k

i

�t

= c

u

k

i+1

� 2u

k

i

+ u

k

i�1

(�x)

2

, or

u

k+1

i

= u

k

i

+ c

�t

(�x)

2

⇣
u

k

i+1

� 2u

k

i

+ u

k

i�1

⌘
, i = 1, . . . , n

Stencil : pattern of mesh points involved at each level

Michael T. Heath Scientific Computing 24 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Heat Equation, continued

Boundary conditions give us u

k

0

= ↵ and u

k

n+1

= � for all k,
and initial conditions provide starting values u

0

i

= f(x

i

),
i = 1, . . . , n

So we can march numerical solution forward in time using
this explicit difference scheme

Local truncation error is O(�t) +O((�x)

2

), so scheme is
first-order accurate in time and second-order accurate in
space

< interactive example >

Michael T. Heath Scientific Computing 25 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Stability

Unlike Method of Lines, where time step is chosen
automatically by ODE solver, user must choose time step
�t in fully discrete method, taking into account both
accuracy and stability requirements
For example, fully discrete scheme for heat equation is
simply Euler’s method applied to semidiscrete system of
ODEs for heat equation given previously
We saw that Jacobian matrix of semidiscrete system has
eigenvalues between �4c/(�x)

2 and 0, so stability region
for Euler’s method requires time step to satisfy

�t  (�x)

2

2 c

Severe restriction on time step can make explicit methods
relatively inefficient < interactive example >

Michael T. Heath Scientific Computing 29 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Implicit Finite Difference Methods

For ODEs we saw that implicit methods are stable for much
greater range of step sizes, and same is true of implicit
methods for PDEs

Applying backward Euler method to semidiscrete system
for heat equation gives implicit finite difference scheme

u

k+1

i

= u

k

i

+ c

�t

(�x)

2

⇣
u

k+1

i+1

� 2u

k+1

i

+ u

k+1

i�1

⌘
, i = 1, . . . , n

Michael T. Heath Scientific Computing 30 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Implicit Finite Difference Methods, continued

This scheme inherits unconditional stability of backward
Euler method, which means there is no stability restriction
on relative sizes of �t and �x

But first-order accuracy in time still severely limits time step

< interactive example >

Michael T. Heath Scientific Computing 31 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Crank-Nicolson Method

Applying trapezoid method to semidiscrete system of
ODEs for heat equation yields implicit Crank-Nicolson
method

u

k+1

i

= u

k

i

+c

�t

2(�x)

2

⇣
u

k+1

i+1

� 2u

k+1

i

+ u

k+1

i�1

+ u

k

i+1

� 2u

k

i

+ u

k

i�1

⌘

This method is unconditionally stable and second-order
accurate in time < interactive example >

Michael T. Heath Scientific Computing 32 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Implicit Finite Difference Methods, continued

Much greater stability of implicit finite difference methods
enables them to take much larger time steps than explicit
methods, but they require more work per step, since
system of equations must be solved at each step

For both backward Euler and Crank-Nicolson methods for
heat equation in one space dimension, this linear system is
tridiagonal, and thus both work and storage required are
modest

In higher dimensions, matrix of linear system does not
have such simple form, but it is still very sparse, with
nonzeros in regular pattern

Michael T. Heath Scientific Computing 33 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Convergence

In order for approximate solution to converge to true
solution of PDE as step sizes in time and space jointly go
to zero, following two conditions must hold

Consistency : local truncation error must go to zero
Stability : approximate solution at any fixed time t must
remain bounded

Lax Equivalence Theorem says that for well-posed linear
PDE, consistency and stability are together necessary and
sufficient for convergence

Neither consistency nor stability alone is sufficient to
guarantee convergence

Michael T. Heath Scientific Computing 34 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Stability

Consistency is usually fairly easy to verify using Taylor
series expansion

Analyzing stability is more challenging, and several
methods are available

Matrix method, based on location of eigenvalues of matrix
representation of difference scheme, as we saw with
Euler’s method for heat equation
Fourier method, in which complex exponential
representation of solution error is substituted into difference
equation and analyzed for growth or decay
Domains of dependence, in which domains of dependence
of PDE and difference scheme are compared

Michael T. Heath Scientific Computing 35 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

CFL Condition

Domain of dependence of PDE is portion of problem
domain that influences solution at given point, which
depends on characteristics of PDE

Domain of dependence of difference scheme is set of all
other mesh points that affect approximate solution at given
mesh point

CFL Condition : necessary condition for explicit finite
difference scheme for hyperbolic PDE to be stable is that
for each mesh point domain of dependence of PDE must
lie within domain of dependence of finite difference
scheme

Michael T. Heath Scientific Computing 36 / 105

❑  Observations:
❑  Error is smooth after just

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Outline

1 Partial Differential Equations

2 Numerical Methods for PDEs

3 Sparse Linear Systems

Michael T. Heath Scientific Computing 2 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Partial Differential Equations

Partial differential equations (PDEs) involve partial
derivatives with respect to more than one independent
variable

Independent variables typically include one or more space
dimensions and possibly time dimension as well

More dimensions complicate problem formulation: we can
have pure initial value problem, pure boundary value
problem, or mixture of both

Equation and boundary data may be defined over irregular
domain

Michael T. Heath Scientific Computing 3 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Partial Differential Equations, continued

For simplicity, we will deal only with single PDEs (as
opposed to systems of several PDEs) with only two
independent variables, either

two space variables, denoted by x and y, or
one space variable denoted by x and one time variable
denoted by t

Partial derivatives with respect to independent variables
are denoted by subscripts, for example

u

t

= @u/@t

u

xy

= @

2
u/@x@y

Michael T. Heath Scientific Computing 4 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Classification of PDEs

Order of PDE is order of highest-order partial derivative
appearing in equation

For example, advection equation is first order

Important second-order PDEs include

Heat equation : u

t

= u

xx

Wave equation : u

tt

= u

xx

Laplace equation : u

xx

+ u

yy

= 0

Michael T. Heath Scientific Computing 8 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Classification of PDEs, continued

Second-order linear PDEs of general form

au

xx

+ bu

xy

+ cu

yy

+ du

x

+ eu

y

+ fu+ g = 0

are classified by value of discriminant b

2 � 4ac

b

2 � 4ac > 0: hyperbolic (e.g., wave equation)

b

2 � 4ac = 0: parabolic (e.g., heat equation)

b

2 � 4ac < 0: elliptic (e.g., Laplace equation)

Michael T. Heath Scientific Computing 9 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Partial Differential Equations
Characteristics
Classification

Classification of PDEs, continued

Classification of more general PDEs is not so clean and simple,
but roughly speaking

Hyperbolic PDEs describe time-dependent, conservative
physical processes, such as convection, that are not
evolving toward steady state

Parabolic PDEs describe time-dependent, dissipative
physical processes, such as diffusion, that are evolving
toward steady state

Elliptic PDEs describe processes that have already
reached steady state, and hence are time-independent

Michael T. Heath Scientific Computing 10 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Time-Independent Problems

We next consider time-independent, elliptic PDEs in two
space dimensions, such as Helmholtz equation

u

xx

+ u

yy

+ �u = f(x, y)

Important special cases
Poisson equation : � = 0

Laplace equation : � = 0 and f = 0

For simplicity, we will consider this equation on unit square

Numerous possibilities for boundary conditions specified
along each side of square

Dirichlet : u is specified
Neumann : u

x

or u
y

is specified
Mixed : combinations of these are specified

Michael T. Heath Scientific Computing 39 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Finite Difference Methods

Finite difference methods for such problems proceed as
before

Define discrete mesh of points within domain of equation
Replace derivatives in PDE by finite difference
approximations
Seek numerical solution at mesh points

Unlike time-dependent problems, solution is not produced
by marching forward step by step in time

Approximate solution is determined at all mesh points
simultaneously by solving single system of algebraic
equations

Michael T. Heath Scientific Computing 40 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Example: Laplace Equation

Consider Laplace equation

u

xx

+ u

yy

= 0

on unit square with boundary conditions shown below left

Define discrete mesh in domain, including boundaries, as
shown above right

Michael T. Heath Scientific Computing 41 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Laplace Equation, continued

Interior grid points where we will compute approximate
solution are given by

(x

i

, y

j

) = (ih, jh), i, j = 1, . . . , n

where in example n = 2 and h = 1/(n+ 1) = 1/3

Next we replace derivatives by centered difference
approximation at each interior mesh point to obtain finite
difference equation

u

i+1,j

� 2u

i,j

+ u

i�1,j

h

2

+

u

i,j+1

� 2u

i,j

+ u

i,j�1

h

2

= 0

where u

i,j

is approximation to true solution u(x

i

, y

j

) for
i, j = 1, . . . , n, and represents one of given boundary
values if i or j is 0 or n+ 1

Michael T. Heath Scientific Computing 42 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Laplace Equation, continued

Simplifying and writing out resulting four equations
explicitly gives

4u

1,1

� u

0,1

� u

2,1

� u

1,0

� u

1,2

= 0

4u

2,1

� u

1,1

� u

3,1

� u

2,0

� u

2,2

= 0

4u

1,2

� u

0,2

� u

2,2

� u

1,1

� u

1,3

= 0

4u

2,2

� u

1,2

� u

3,2

� u

2,1

� u

2,3

= 0

Michael T. Heath Scientific Computing 43 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Laplace Equation, continued

Writing previous equations in matrix form gives

Ax =

2

664

4 �1 �1 0

�1 4 0 �1

�1 0 4 �1

0 �1 �1 4

3

775

2

664

u

1,1

u

2,1

u

1,2

u

2,2

3

775 =

2

664

0

0

1

1

3

775 = b

System of equations can be solved for unknowns u

i,j

either by direct method based on factorization or by
iterative method, yielding solution

x =

2

664

u

1,1

u

2,1

u

1,2

u

2,2

3

775 =

2

664

0.125

0.125

0.375

0.375

3

775

Michael T. Heath Scientific Computing 44 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Laplace Equation, continued

In practical problem, mesh size h would be much smaller,
and resulting linear system would be much larger

Matrix would be very sparse, however, since each equation
would still involve only five variables, thereby saving
substantially on work and storage

< interactive example >

Michael T. Heath Scientific Computing 45 / 105

Degrees of Freedom for 2D Poisson Equation

uij ui+1,jui�1,j

ui,j+1

ui,j�1

Figure 1: Grid notation for 2D problem showing 5-point finite di↵erence stencil.

1

❑  It is convenient to represent the unknowns as a vector of the form
u = (u11 u21 u31 … uij … umn)T

System Matrix for 2D Poisson Problem

with the further assumption of uniform grid spacing, ∆x = ∆y = h. We’ll also consider ho-
mogeneous Dirichlet boundary conditions, that is, u(x, y)|∂Ω ≡ 0. The respective unknowns
and data in this case are uij and fij , governed by the following system of equations

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)

= fij , (12)

for i, j ∈ [1, . . . , N]2.

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system
takes on the following matrix structure for ∆x = ∆y = h.

1
h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1

−1 4 −1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 4 −1

−1 4 −1
. . .

−1 −1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

−1 −1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1

−1 −1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

K2D

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u
11

u
21

.

.

.

.

.

.

uM1

u
12

u
22

.

.

.

.

.

.

uM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u
1N

u
2N

.

.

.

.

.

.

uMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
11

f
21

.

.

.

.

.

.

fM1

f
12

f
22

.

.

.

.

.

.

fM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
1N

f
2N

.

.

.

.

.

.

fMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

f

Note that K2D can be expressed as the sum of two systems, one associated with Kx coming
from δ2u

δx2 , and one associated with one associated with Ky coming from δ2u
δy2

. Specifically,
we can write

K2D = (Iy ⊗Kx) + (Ky ⊗ Ix), (13)

where we have introduced the Kronecker (or tensor) product, ⊗. For two matrices A and
B, their Kronecker product C = A⊗B is defined as the block matrix

C :=

⎛

⎜
⎜
⎜
⎜
⎝

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB
...

...
...

am1B am2B · · · · · · amnB

⎞

⎟
⎟
⎟
⎟
⎠

. (14)

4

with the further assumption of uniform grid spacing, ∆x = ∆y = h. We’ll also consider ho-
mogeneous Dirichlet boundary conditions, that is, u(x, y)|∂Ω ≡ 0. The respective unknowns
and data in this case are uij and fij , governed by the following system of equations

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)

= fij , (12)

for i, j ∈ [1, . . . , N]2.

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system
takes on the following matrix structure for ∆x = ∆y = h.

1
h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1

−1 4 −1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 4 −1

−1 4 −1
. . .

−1 −1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

−1 −1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1

−1 −1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

K2D

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u
11

u
21

.

.

.

.

.

.

uM1

u
12

u
22

.

.

.

.

.

.

uM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u
1N

u
2N

.

.

.

.

.

.

uMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
11

f
21

.

.

.

.

.

.

fM1

f
12

f
22

.

.

.

.

.

.

fM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
1N

f
2N

.

.

.

.

.

.

fMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

f

Note that K2D can be expressed as the sum of two systems, one associated with Kx coming
from δ2u

δx2 , and one associated with one associated with Ky coming from δ2u
δy2

. Specifically,
we can write

K2D = (Iy ⊗Kx) + (Ky ⊗ Ix), (13)

where we have introduced the Kronecker (or tensor) product, ⊗. For two matrices A and
B, their Kronecker product C = A⊗B is defined as the block matrix

C :=

⎛

⎜
⎜
⎜
⎜
⎝

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB
...

...
...

am1B am2B · · · · · · amnB

⎞

⎟
⎟
⎟
⎟
⎠

. (14)

4

System Matrix for 2D Poisson Problem
We will soon explore a few properties of this form, but for now simply note that it allows a
clean expression of the discretized Poisson operator in 2D. Consider the following splitting
of K2Du.

K2D =
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1

−1 2 −1

−1

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

2 −1

−1 2 −1

−1

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

2 −1

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

u21

.

.

.

.

.

.

uN1

u12

u22

.

.

.

.

.

.

uN2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1N

u2N

.

.

.

.

.

.

uNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1

2 −1

.
.
.

.
.
.

.
.
.

.
.
.

2 −1

−1 2

.
.
.

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1 2

.
.
.

.
.
.

.
.
.

−1

.
.
.

.
.
.

−1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

u21

.

.

.

.

.

.

uN1

u12

u22

.

.

.

.

.

.

uN2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1N

u2N

.

.

.

.

.

.

uNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

K2D =

⎛

⎜
⎜
⎜
⎜
⎝

Kx

Kx

. . .

Kx

⎞

⎟
⎟
⎟
⎟
⎠

+
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2Ix −Ix

−Ix 2Ix
. . .

. . .
. . . −Ix
−Ix 2Ix

⎞

⎟
⎟
⎟
⎟
⎟
⎠

5

System Matrix for 2D Poisson Problem

We will soon explore a few properties of this form, but for now simply note that it allows a
clean expression of the discretized Poisson operator in 2D. Consider the following splitting
of K2Du.

K2D =
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1

−1 2 −1

−1

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

2 −1

−1 2 −1

−1

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

2 −1

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

u21

.

.

.

.

.

.

uN1

u12

u22

.

.

.

.

.

.

uN2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1N

u2N

.

.

.

.

.

.

uNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1

2 −1

.
.
.

.
.
.

.
.
.

.
.
.

2 −1

−1 2

.
.
.

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1 2

.
.
.

.
.
.

.
.
.

−1

.
.
.

.
.
.

−1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

u21

.

.

.

.

.

.

uN1

u12

u22

.

.

.

.

.

.

uN2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1N

u2N

.

.

.

.

.

.

uNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

K2D =

⎛

⎜
⎜
⎜
⎜
⎝

Kx

Kx

. . .

Kx

⎞

⎟
⎟
⎟
⎟
⎠

+
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2Ix −Ix

−Ix 2Ix
. . .

. . .
. . . −Ix
−Ix 2Ix

⎞

⎟
⎟
⎟
⎟
⎟
⎠

5

System Matrix for 2D Poisson Problem

with the further assumption of uniform grid spacing, ∆x = ∆y = h. We’ll also consider ho-
mogeneous Dirichlet boundary conditions, that is, u(x, y)|∂Ω ≡ 0. The respective unknowns
and data in this case are uij and fij , governed by the following system of equations

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)

= fij , (12)

for i, j ∈ [1, . . . , N]2.

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system
takes on the following matrix structure for ∆x = ∆y = h.

1
h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1

−1 4 −1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 4 −1

−1 4 −1
. . .

−1 −1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

−1 −1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1

−1 −1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

K2D

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u
11

u
21

.

.

.

.

.

.

uM1

u
12

u
22

.

.

.

.

.

.

uM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u
1N

u
2N

.

.

.

.

.

.

uMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
11

f
21

.

.

.

.

.

.

fM1

f
12

f
22

.

.

.

.

.

.

fM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
1N

f
2N

.

.

.

.

.

.

fMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

f

Note that K2D can be expressed as the sum of two systems, one associated with Kx coming
from δ2u

δx2 , and one associated with one associated with Ky coming from δ2u
δy2

. Specifically,
we can write

K2D = (Iy ⊗Kx) + (Ky ⊗ Ix), (13)

where we have introduced the Kronecker (or tensor) product, ⊗. For two matrices A and
B, their Kronecker product C = A⊗B is defined as the block matrix

C :=

⎛

⎜
⎜
⎜
⎜
⎝

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB
...

...
...

am1B am2B · · · · · · amnB

⎞

⎟
⎟
⎟
⎟
⎠

. (14)

4

We will soon explore a few properties of this form, but for now simply note that it allows a
clean expression of the discretized Poisson operator in 2D. Consider the following splitting
of K2Du.

K2D =
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1

−1 2 −1

−1

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

2 −1

−1 2 −1

−1

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

2 −1

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

u21

.

.

.

.

.

.

uN1

u12

u22

.

.

.

.

.

.

uN2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1N

u2N

.

.

.

.

.

.

uNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1

2 −1

.
.
.

.
.
.

.
.
.

.
.
.

2 −1

−1 2

.
.
.

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1 2

.
.
.

.
.
.

.
.
.

−1

.
.
.

.
.
.

−1

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−1

−1 2

−1 2

.
.
.

.
.
.

.
.
.

.
.
.

−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11

u21

.

.

.

.

.

.

uN1

u12

u22

.

.

.

.

.

.

uN2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u1N

u2N

.

.

.

.

.

.

uNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

K2D =

⎛

⎜
⎜
⎜
⎜
⎝

Kx

Kx

. . .

Kx

⎞

⎟
⎟
⎟
⎟
⎠

+
1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2Ix −Ix

−Ix 2Ix
. . .

. . .
. . . −Ix
−Ix 2Ix

⎞

⎟
⎟
⎟
⎟
⎟
⎠

5

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Finite Element Methods

Finite element methods are also applicable to boundary
value problems for PDEs

Conceptually, there is no change in going from one
dimension to two or three dimensions

Solution is represented as linear combination of basis
functions
Some criterion (e.g., Galerkin) is applied to derive system of
equations that determines coefficients of linear combination

Main practical difference is that instead of subintervals in
one dimension, elements usually become triangles or
rectangles in two dimensions, or tetrahedra or hexahedra
in three dimensions

Michael T. Heath Scientific Computing 46 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Finite Element Methods, continued

Basis functions typically used are bilinear or bicubic
functions in two dimensions or trilinear or tricubic functions
in three dimensions, analogous to piecewise linear “hat”
functions or piecewise cubics in one dimension

Increase in dimensionality means that linear system to be
solved is much larger, but it is still sparse due to local
support of basis functions

Finite element methods for PDEs are extremely flexible
and powerful, but detailed treatment of them is beyond
scope of this course

Michael T. Heath Scientific Computing 47 / 105

Example of high-order finite element (one element)

 N=10

N=4

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Sparse Linear Systems

Boundary value problems and implicit methods for
time-dependent PDEs yield systems of linear algebraic
equations to solve

Finite difference schemes involving only a few variables
each, or localized basis functions in finite element
approach, cause linear system to be sparse, with relatively
few nonzero entries

Sparsity can be exploited to use much less than O(n

2

)

storage and O(n

3

) work required in standard approach to
solving system with dense matrix

Michael T. Heath Scientific Computing 48 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Sparse Factorization Methods

Gaussian elimination and Cholesky factorization are
applicable to large sparse systems, but care is required to
achieve reasonable efficiency in solution time and storage
requirements

Key to efficiency is to store and operate on only nonzero
entries of matrix

Special data structures are required instead of simple 2-D
arrays for storing dense matrices

Michael T. Heath Scientific Computing 49 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Band Systems

For 1-D problems, equations and unknowns can usually be
ordered so that nonzeros are concentrated in narrow band,
which can be stored efficiently in rectangular 2-D array by
diagonals

Bandwidth can often be reduced by reordering rows and
columns of matrix

For problems in two or more dimensions, even narrowest
possible band often contains mostly zeros, so 2-D array
storage is wasteful

Michael T. Heath Scientific Computing 50 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

General Sparse Data Structures

In general, sparse systems require data structures that
store only nonzero entries, along with indices to identify
their locations in matrix

Explicitly storing indices incurs additional storage overhead
and makes arithmetic operations on nonzeros less efficient
due to indirect addressing to access operands

Data structure is worthwhile only if matrix is sufficiently
sparse, which is often true for very large problems arising
from PDEs and many other applications

Michael T. Heath Scientific Computing 51 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Fill

When applying LU or Cholesky factorization to sparse
matrix, taking linear combinations of rows or columns to
annihilate unwanted nonzero entries can introduce new
nonzeros into matrix locations that were initially zero

Such new nonzeros, called fill, must be stored and may
themselves eventually need to be annihilated in order to
obtain triangular factors

Resulting triangular factors can be expected to contain at
least as many nonzeros as original matrix and usually
significant fill as well

Michael T. Heath Scientific Computing 52 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Reordering to Limit Fill

Amount of fill is sensitive to order in which rows and
columns of matrix are processed, so basic problem in
sparse factorization is reordering matrix to limit fill during
factorization

Exact minimization of fill is hard combinatorial problem
(NP-complete), but heuristic algorithms such as minimum
degree and nested dissection limit fill well for many types
of problems

Michael T. Heath Scientific Computing 53 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Example: Laplace Equation

Discretization of Laplace equation on square by
second-order finite difference approximation to second
derivatives yields system of linear equations whose
unknowns correspond to mesh points (nodes) in square
grid

Two nodes appearing in same equation of system are
neighbors connected by edge in mesh or graph

Diagonal entries of matrix correspond to nodes in graph,
and nonzero off-diagonal entries correspond to edges in
graph: a

ij

6= 0 , nodes i and j are neighbors

Michael T. Heath Scientific Computing 54 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Natural, Row-Wise Ordering

With nodes numbered row-wise (or column-wise), matrix is
block tridiagonal, with each nonzero block either tridiagonal
or diagonal

Matrix is banded but has many zero entries inside band

Cholesky factorization fills in band almost completely

Michael T. Heath Scientific Computing 55 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Graph Model of Elimination

Each step of factorization process corresponds to
elimination of one node from graph

Eliminating node causes its neighboring nodes to become
connected to each other

If any such neighbors were not already connected, then fill
results (new edges in graph and new nonzeros in matrix)

Michael T. Heath Scientific Computing 56 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Minimum Degree Ordering

Good heuristic for limiting fill is to eliminate first those
nodes having fewest neighbors

Number of neighbors is called degree of node, so heuristic
is known as minimum degree

At each step, select node of smallest degree for
elimination, breaking ties arbitrarily

After node has been eliminated, its neighbors become
connected to each other, so degrees of some nodes may
change

Process is then repeated, with new node of minimum
degree eliminated next, and so on until all nodes have
been eliminated

Michael T. Heath Scientific Computing 57 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Minimum Degree Ordering, continued

Cholesky factor suffers much less fill than with original
ordering, and advantage grows with problem size

Sophisticated versions of minimum degree are among
most effective general-purpose orderings known

Michael T. Heath Scientific Computing 58 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Nested Dissection Ordering

Nested dissection is based on divide-and-conquer

First, small set of nodes is selected whose removal splits
graph into two pieces of roughly equal size

No node in either piece is connected to any node in other,
so no fill occurs in either piece due to elimination of any
node in the other

Separator nodes are numbered last, then process is
repeated recursively on each remaining piece of graph
until all nodes have been numbered

Michael T. Heath Scientific Computing 59 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Nested Dissection Ordering, continued

Dissection induces blocks of zeros in matrix that are
automatically preserved during factorization

Recursive nature of algorithm can be seen in hierarchical
block structure of matrix, which would involve many more
levels in larger problems

Again, Cholesky factor suffers much less fill than with
original ordering, and advantage grows with problem size

Michael T. Heath Scientific Computing 60 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Sparse Factorization Methods

Sparse factorization methods are accurate, reliable, and
robust

They are methods of choice for 1-D problems and are
usually competitive for 2-D problems, but they can be
prohibitively expensive in both work and storage for very
large 3-D problems

Iterative methods often provide viable alternative in these
cases

Michael T. Heath Scientific Computing 61 / 105

The qualitative difference between 2D and 3D led to a burst of research in
iterative methods in the 80s, when computers finally became powerful enough
to make simulation of 3D problems tractable.

Developments were prominent in multigrid and Krylov subspace projection
methods.

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Fast Direct Methods

For certain elliptic boundary value problems, such as
Poisson equation on rectangular domain, fast Fourier
transform can be used to compute solution to discrete
system very efficiently

For problem with n mesh points, solution can be computed
in O(n log n) operations

This technique is basis for several “fast Poisson solver”
software packages

Cyclic reduction can achieve similar efficiency, and is
somewhat more general

FACR method combines Fourier analysis and cyclic
reduction to produce even faster method with O(n log log n)

complexity
Michael T. Heath Scientific Computing 62 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Iterative Methods for Linear Systems

Iterative methods for solving linear systems begin with
initial guess for solution and successively improve it until
solution is as accurate as desired

In theory, infinite number of iterations might be required to
converge to exact solution

In practice, iteration terminates when residual kb�Axk, or
some other measure of error, is as small as desired

Michael T. Heath Scientific Computing 63 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Stationary Iterative Methods

Simplest type of iterative method for solving Ax = b has
form

x

k+1

= Gx

k

+ c

where matrix G and vector c are chosen so that fixed point
of function g(x) = Gx+ c is solution to Ax = b

Method is stationary if G and c are fixed over all iterations

G is Jacobian matrix of fixed-point function g, so stationary
iterative method converges if

⇢(G) < 1

and smaller spectral radius yields faster convergence

Michael T. Heath Scientific Computing 64 / 105

Iterative Solvers - Linear Elliptic Problems

• PDEs give rise to large sparse linear systems of the form

Ax = b or Au = f.

Here, we’ll take A to be the (SPD) matrix arising from finite di↵erences
applied to the Poisson equation

�
✓
@

2
u

@x

2
+

@

2
u

@y

2

◆
= f(x, y) x, y 2 [0, 1]2, u = 0 on @⌦

�
✓
�

2
u

�x

2
+

�

2
u

�y

2

◆

ij

⇡ f |
ij

,

• Assuming uniform spacing in x and y we have

�

2
u

�x

2
:=

u

i+1,j � 2u
ij

+ u

i�1,j

h

2
and

�

2
u

�y

2
:=

u

i,j+1 � 2u
ij

+ u

i,j�1

h

2

• Our finite di↵erence formula is thus,

1

h

2
(u

i+1,j + u

i�1,j � 4u
ij

+ u

i,j+1 + u

i,j�1) = f

ij

.

• Rearranging, we can solve for u
ij

:

4

h

2
u

ij

= f

ij

+
1

h

2
(u

i+1,j + u

i�1,j + u

i,j+1 + u

i,j�1)

u

ij

=
h

2

4
f

ij

+ +
1

4
(u

i+1,j + u

i�1,j + u

i,j+1 + u

i,j�1)

• Jacobi iteration amounts to using the expression above as a fixed-point
iteration scheme:

u

k+1
ij

=
h

2

4
f

ij

+ +
1

4

�
u

k

i+1,j + u

k

i�1,j + u

k

i,j+1 + u

k

i,j�1

�

=
h

2

4
f

ij

+ average of current neighbor values

1

Iterative Solvers - Linear Elliptic Problems

• PDEs give rise to large sparse linear systems of the form

Ax = b or Au = f.

Here, we’ll take A to be the (SPD) matrix arising from finite di↵erences
applied to the Poisson equation

�
✓
@

2
u

@x

2
+

@

2
u

@y

2

◆
= f(x, y) x, y 2 [0, 1]2, u = 0 on @⌦

�
✓
�

2
u

�x

2
+

�

2
u

�y

2

◆

ij

⇡ f |
ij

,

• Assuming uniform spacing in x and y we have

�

2
u

�x

2
:=

u

i+1,j � 2u
ij

+ u

i�1,j

h

2
and

�

2
u

�y

2
:=

u

i,j+1 � 2u
ij

+ u

i,j�1

h

2

• Our finite di↵erence formula is thus,

1

h

2
(u

i+1,j + u

i�1,j � 4u
ij

+ u

i,j+1 + u

i,j�1) = f

ij

.

• Rearranging, we can solve for u
ij

:

4

h

2
u

ij

= f

ij

+
1

h

2
(u

i+1,j + u

i�1,j + u

i,j+1 + u

i,j�1)

u

ij

=
h

2

4
f

ij

+ +
1

4
(u

i+1,j + u

i�1,j + u

i,j+1 + u

i,j�1)

• Jacobi iteration amounts to using the expression above as a fixed-point
iteration scheme:

u

k+1
ij

=
h

2

4
f

ij

+ +
1

4

�
u

k

i+1,j + u

k

i�1,j + u

k

i,j+1 + u

k

i,j�1

�

=
h

2

4
f

ij

+ average of current neighbor values

1

Iterative Solvers - Linear Elliptic Problems

• PDEs give rise to large sparse linear systems of the form

Ax = b or Au = f.

Here, we’ll take A to be the (SPD) matrix arising from finite di↵erences
applied to the Poisson equation

�
✓
@

2
u

@x

2
+

@

2
u

@y

2

◆
= f(x, y) x, y 2 [0, 1]2, u = 0 on @⌦

�
✓
�

2
u

�x

2
+

�

2
u

�y

2

◆

ij

⇡ f |
ij

,

• Assuming uniform spacing in x and y we have

�

2
u

�x

2
:=

u

i+1,j � 2u
ij

+ u

i�1,j

h

2
and

�

2
u

�y

2
:=

u

i,j+1 � 2u
ij

+ u

i,j�1

h

2

• Our finite di↵erence formula is thus,

1

h

2
(u

i+1,j + u

i�1,j � 4u
ij

+ u

i,j+1 + u

i,j�1) = f

ij

.

• Rearranging, we can solve for u
ij

:

4

h

2
u

ij

= f

ij

+
1

h

2
(u

i+1,j + u

i�1,j + u

i,j+1 + u

i,j�1)

u

ij

=
h

2

4
f

ij

+ +
1

4
(u

i+1,j + u

i�1,j + u

i,j+1 + u

i,j�1)

• Jacobi iteration amounts to using the expression above as a fixed-point
iteration scheme:

u

k+1
ij

=
h

2

4
f

ij

+ +
1

4

�
u

k

i+1,j + u

k

i�1,j + u

k

i,j+1 + u

k

i,j�1

�

=
h

2

4
f

ij

+ average of current neighbor values

1

u

k+1
ij

=
h

2

4
f

ij

+ +
1

4

�
u

k

i+1,j + u

k

i�1,j + u

k

i,j+1 + u

k

i,j�1

�

• Note that this is analogous to

u

k+1
ij

= u

k

ij

+
h

2

4


f

ij

+
1

h

2

�
u

k

i+1,j + u

k

i�1,j � 4uk
ij

+ u

k

i,j+1 + u

k

i,j�1

��

u

k+1 = u

k + �t

�
f � Au

k

�
, �t :=

h

2

4
,

which is Euler forward applied to u

0 = f � Au.

• We note that we have stability if |��t| < 2 (because this system, �A,
has real negative eigenvalues).

• Recall that the eigenvalues for the 1D di↵usion operator are

�

i

=
2

h

2
(1� cos i⇡�x)  4

h

2
= 4(n+ 1)2

• In 2D, we pick up contributions from both �

2
u

�x

2 and �

2
u

�y

2 , so

max |�| < ⇠ 8

h

2

and we have stability since

max |��t| <

8

h

2

h

2

4
= 2

• So, Jacobi iteration is equivalent to solving Au = f by time marching
u

0 = f � Au using EF

u

k+1 = u

k + �t

�
f � Au

k

�

with maximum allowable timestep size

�t =
h

2

4

2

u

k+1
ij

=
h

2

4
f

ij

+ +
1

4

�
u

k

i+1,j + u

k

i�1,j + u

k

i,j+1 + u

k

i,j�1

�

• Note that this is analogous to

u

k+1
ij

= u

k

ij

+
h

2

4


f

ij

+
1

h

2

�
u

k

i+1,j + u

k

i�1,j � 4uk
ij

+ u

k

i,j+1 + u

k

i,j�1

��

u

k+1 = u

k + �t

�
f � Au

k

�
, �t :=

h

2

4
,

which is Euler forward applied to u

0 = f � Au.

• We note that we have stability if |��t| < 2 (because this system, �A,
has real negative eigenvalues).

• Recall that the eigenvalues for the 1D di↵usion operator are

�

i

=
2

h

2
(1� cos i⇡�x)  4

h

2
= 4(n+ 1)2

• In 2D, we pick up contributions from both �

2
u

�x

2 and �

2
u

�y

2 , so

max |�| < ⇠ 8

h

2

and we have stability since

max |��t| <

8

h

2

h

2

4
= 2

• So, Jacobi iteration is equivalent to solving Au = f by time marching
u

0 = f � Au using EF

u

k+1 = u

k + �t

�
f � Au

k

�

with maximum allowable timestep size

�t =
h

2

4

2

Jacobi Iteration in Matrix Form

• Jacobi iteration has the matrix form

u

k+1 = u

k + �t

�
f � Au

k

�

• More generally, we have Richardson iteration

u

k+1 = u

k + �D

�
f � Au

k

�

• If � = 1 and D

�1 =diag(A) [d
ii

= 1/a
ii

, d
ij

= 0, i 6= j],
we have standard Jacobi iteration.

• If � < 1 we have damped Jacobi.

• D is generally known as a smoother or a preconditioner,
depending on context.

3

Rate of Convergence for Jacobi Iteration

• Let ek := u� u

k.

• Since Au = f , we have

u

k+1 = u

k + �t

�
Au� Au

k

�

�u = �u

��� � ����������

�e

k+1 = �e

k � ��tAe

k

�e

k+1 = � (I � ��tA) ek

e

k = (I � ��tA)k e0

= (I � ��tA)k u if u0 = 0.

• If � < 1, then the high wavenumber error components will decay because
��t will be well within the stability region for EF.

• The low-wavenumber components of the solution (and error) evolve like
e

��t, because these will be well-resolved in time by Euler forward.

• Thus, we can anticipate

||ek|| ⇡ ||u||e��min��tk

with �min ⇡ 2⇡2 (for 2D).

• If � ⇡ 1, we have

||ek|| ⇡ ||u||e�2⇡2
t = ||u||e�2⇡2(kh2

/4)  tol

• Example, find the number of iterations when tol=10�12.

e

�(⇡2
h

2
/4)k ⇡ 10�12

�(⇡2
h

2
/4)k ⇡ ln 10�12 ⇡ 24 (27.6...)

k ⇡ 28 · 2
⇡

2
h

2
⇡ 60n2

4

Rate of Convergence for Jacobi Iteration

• Let ek := u� u

k.

• Since Au = f , we have

u

k+1 = u

k + �t

�
Au� Au

k

�

�u = �u

��� � ����������

�e

k+1 = �e

k � ��tAe

k

�e

k+1 = � (I � ��tA) ek

e

k = (I � ��tA)k e0

= (I � ��tA)k u if u0 = 0.

• If � < 1, then the high wavenumber error components will decay because
��t will be well within the stability region for EF.

• The low-wavenumber components of the solution (and error) evolve like
e

��t, because these will be well-resolved in time by Euler forward.

• Thus, we can anticipate

||ek|| ⇡ ||u||e��min��tk

with �min ⇡ 2⇡2 (for 2D).

• If � ⇡ 1, we have

||ek|| ⇡ ||u||e�2⇡2
t = ||u||e�2⇡2(kh2

/4)  tol

• Example, find the number of iterations when tol=10�12.

e

�(⇡2
h

2
/4)k ⇡ 10�12

�(⇡2
h

2
/4)k ⇡ ln 10�12 ⇡ 24 (27.6...)

k ⇡ 28 · 2
⇡

2
h

2
⇡ 60n2

4

Rate of Convergence for Jacobi Iteration

• Let ek := u� u

k.

• Since Au = f , we have

u

k+1 = u

k + �t

�
Au� Au

k

�

�u = �u

��� � ����������

�e

k+1 = �e

k � ��tAe

k

�e

k+1 = � (I � ��tA) ek

e

k = (I � ��tA)k e0

= (I � ��tA)k u if u0 = 0.

• If � < 1, then the high wavenumber error components will decay because
��t will be well within the stability region for EF.

• The low-wavenumber components of the solution (and error) evolve like
e

��t, because these will be well-resolved in time by Euler forward.

• Thus, we can anticipate

||ek|| ⇡ ||u||e��min��tk

with �min ⇡ 2⇡2 (for 2D).

• If � ⇡ 1, we have

||ek|| ⇡ ||u||e�2⇡2
t = ||u||e�2⇡2(kh2

/4)  tol

• Example, find the number of iterations when tol=10�12.

e

�(⇡2
h

2
/4)k ⇡ 10�12

�(⇡2
h

2
/4)k ⇡ ln 10�12 ⇡ 24 (27.6...)

k ⇡ 28 · 2
⇡

2
h

2
⇡ 6n2

4

Recap

• Low-wavenumber components decay at a fixed rate: e��min�tk.

• Stability mandates �t <⇡ h

2
/4 = 1/4(n+ 1)�2.

• Number of steps scales like n

2.

• Note, if � = 1, then highest and lowest wavenumber components
decay at same rate.

• If 1
2 < � < 1, high wavenumber components of error decay very fast.

We say that damped Jacobi iteration is a smoother.

5

Matlab Example

Conjugate Gradient Iteration

• Recall that Jacobi iteration is of the form

u

k+1 = u

k + �t

�
f � Au

k

�

and the error is

u� u

k = e

k = (I � �tA)k e0 = (I � �tA)k u (e0 = u if u0 = 0)

=
�
I + a1A + a2A

2 + . . . + a

k

A

k

�
u

• The solution is therefore of the form

u

k = �
�
a1A + a2A

2 + . . . + a

k

A

k

�
u

= �
�
a1 + a2A + . . . + a

k

A

k�1
�
Au

= �
�
a1 + a2A + . . . + a

k

A

k�1
�
f

2 lP
k�1(A)f

2 K
k

(A, f), which is the Krylov subspace associated with A and f.

• Thus Jacobi iteration generates an element in K
k

(A, f),
but it is not the best fit in the space.

• Conjugate gradient iteration, on the other hand, finds uk that satisfies

||u� u

k||
A

 ||u� v||
A

8 v 2 K
k

6

Conjugate Gradient Iteration

• Recall that Jacobi iteration is of the form

u

k+1 = u

k + �t

�
f � Au

k

�

and the error is

u� u

k = e

k = (I � �tA)k e0 = (I � �tA)k u (e0 = u if u0 = 0)

=
�
I + a1A + a2A

2 + . . . + a

k

A

k

�
u

• The solution is therefore of the form

u

k = �
�
a1A + a2A

2 + . . . + a

k

A

k

�
u

= �
�
a1 + a2A + . . . + a

k

A

k�1
�
Au

= �
�
a1 + a2A + . . . + a

k

A

k�1
�
f

2 lP
k�1(A)f

2 K
k

(A, f), which is the Krylov subspace associated with A and f.

• Thus Jacobi iteration generates an element in K
k

(A, f),
but it is not the best fit in the space.

• Conjugate gradient iteration, on the other hand, finds uk that satisfies

||u� u

k||
A

 ||u� v||
A

8 v 2 K
k

6

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Conjugate Gradient Method
If A is n⇥ n symmetric positive definite matrix, then
quadratic function

�(x) =

1
2x

T

Ax� x

T

b

attains minimum precisely when Ax = b

Optimization methods have form

x

k+1

= x

k

+ ↵s

k

where ↵ is search parameter chosen to minimize objective
function �(x

k

+ ↵s

k

) along s

k

For quadratic problem, negative gradient is residual vector

�r�(x) = b�Ax = r

Line search parameter can be determined analytically

↵ = r

T

k

s

k

/s

T

k

As

k

Michael T. Heath Scientific Computing 77 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Conjugate Gradient Method, continued

Using these properties, we obtain conjugate gradient (CG)
method for linear systems

x

0

= initial guess
r

0

= b�Ax

0

s

0

= r

0

for k = 0, 1, 2, . . .

↵

k

= r

T

k

r

k

/s

T

k

As

k

x

k+1

= x

k

+ ↵

k

s

k

r

k+1

= r

k

� ↵

k

As

k

�

k+1

= r

T

k+1

r

k+1

/r

T

k

r

k

s

k+1

= r

k+1

+ �

k+1

s

k

end

Michael T. Heath Scientific Computing 78 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Conjugate Gradient Method, continued

Key features that make CG method effective
Short recurrence determines search directions that are
A-orthogonal (conjugate)
Error is minimal over space spanned by search directions
generated so far

Minimum error implies exact solution is reached in at most
n steps, since n linearly independent search directions
must span whole space

In practice, loss of orthogonality due to rounding error
spoils finite termination property, so method is used
iteratively

< interactive example >

Michael T. Heath Scientific Computing 79 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Preconditioning

Convergence rate of CG can often be substantially
accelerated by preconditioning

Apply CG algorithm to M

�1

A, where M is chosen so that
M

�1

A is better conditioned and systems of form Mz = y

are easily solved

Popular choices of preconditioners include
Diagonal or block-diagonal
SSOR
Incomplete factorization
Polynomial
Approximate inverse

Michael T. Heath Scientific Computing 80 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Generalizations of CG Method

CG is not directly applicable to nonsymmetric or indefinite
systems

CG cannot be generalized to nonsymmetric systems
without sacrificing one of its two key properties (short
recurrence and minimum error)

Nevertheless, several generalizations have been
developed for solving nonsymmetric systems, including
GMRES, QMR, CGS, BiCG, and Bi-CGSTAB

These tend to be less robust and require more storage
than CG, but they can still be very useful for solving large
nonsymmetric systems

Michael T. Heath Scientific Computing 81 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Example: Iterative Methods

We illustrate various iterative methods by using them to
solve 4⇥ 4 linear system for Laplace equation example
In each case we take x

0

= 0 as starting guess
Jacobi method gives following iterates

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.250 0.250
2 0.062 0.062 0.312 0.312
3 0.094 0.094 0.344 0.344
4 0.109 0.109 0.359 0.359
5 0.117 0.117 0.367 0.367
6 0.121 0.121 0.371 0.371
7 0.123 0.123 0.373 0.373
8 0.124 0.124 0.374 0.374
9 0.125 0.125 0.375 0.375

Michael T. Heath Scientific Computing 82 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Example, continued

Gauss-Seidel method gives following iterates

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.250 0.312
2 0.062 0.094 0.344 0.359
3 0.109 0.117 0.367 0.371
4 0.121 0.123 0.373 0.374
5 0.124 0.125 0.375 0.375
6 0.125 0.125 0.375 0.375

Michael T. Heath Scientific Computing 83 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Example, continued
SOR method (with optimal ! = 1.072 for this problem)
gives following iterates

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.268 0.335
2 0.072 0.108 0.356 0.365
3 0.119 0.121 0.371 0.373
4 0.123 0.124 0.374 0.375
5 0.125 0.125 0.375 0.375

CG method converges in only two iterations for this
problem

k x1 x2 x3 x4

0 0.000 0.000 0.000 0.000
1 0.000 0.000 0.333 0.333
2 0.125 0.125 0.375 0.375

Michael T. Heath Scientific Computing 84 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Rate of Convergence

For more systematic comparison of methods, we compare
them on k ⇥ k model grid problem for Laplace equation on
unit square
For this simple problem, spectral radius of iteration matrix
for each method can be determined analytically, as well as
optimal ! for SOR
Gauss-Seidel is asymptotically twice as fast as Jacobi for
this model problem, but for both methods, number of
iterations per digit of accuracy gained is proportional to
number of mesh points
Optimal SOR is order of magnitude faster than either of
them, and number of iterations per digit gained is
proportional to number of mesh points along one side of
grid

Michael T. Heath Scientific Computing 85 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Rate of Convergence, continued

For some specific values of k, values of spectral radius are
shown below

k Jacobi Gauss-Seidel Optimal SOR
10 0.9595 0.9206 0.5604
50 0.9981 0.9962 0.8840

100 0.9995 0.9990 0.9397
500 0.99998 0.99996 0.98754

Spectral radius is extremely close to 1 for large values of k,
so all three methods converge very slowly

For k = 10 (linear system of order 100), to gain single
decimal digit of accuracy Jacobi method requires more
than 50 iterations, Gauss-Seidel more than 25, and optimal
SOR about 4

Michael T. Heath Scientific Computing 86 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Rate of Convergence, continued

For k = 100 (linear system of order 10,000), to gain single
decimal digit of accuracy Jacobi method requires about
5000 iterations, Gauss-Seidel about 2500, and optimal
SOR about 37

Thus, Jacobi and Gauss-Seidel methods are impractical
for problem of this size, and optimal SOR, though perhaps
reasonable for this problem, also becomes prohibitively
slow for still larger problems

Moreover, performance of SOR depends on knowledge of
optimal value for relaxation parameter !, which is known
analytically for this simple model problem but is much
harder to determine in general

Michael T. Heath Scientific Computing 87 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Rate of Convergence, continued

Convergence behavior of CG is more complicated, but
error is reduced at each iteration by factor of roughly

p
� 1p
+ 1

on average, where

 = cond(A) = kAk · kA�1k =

�

max

(A)

�

min

(A)

When matrix A is well-conditioned, convergence is rapid,
but if A is ill-conditioned, convergence can be arbitrarily
slow

This is why preconditioner is usually used with CG method,
so preconditioned matrix M

�1

A has much smaller
condition number than A

Michael T. Heath Scientific Computing 88 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Rate of Convergence, continued

This convergence estimate is conservative, however, and
CG method may do much better

If matrix A has only m distinct eigenvalues, then
theoretically CG converges in at most m iterations

Detailed convergence behavior depends on entire
spectrum of A, not just its extreme eigenvalues, and in
practice convergence is often superlinear

Michael T. Heath Scientific Computing 89 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Smoothers

Disappointing convergence rates observed for stationary
iterative methods are asymptotic

Much better progress may be made initially before
eventually settling into slow asymptotic phase

Many stationary iterative methods tend to reduce
high-frequency (i.e., oscillatory) components of error
rapidly, but reduce low-frequency (i.e., smooth)
components of error much more slowly, which produces
poor asymptotic rate of convergence

For this reason, such methods are sometimes called
smoothers

< interactive example >

Michael T. Heath Scientific Computing 90 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Multigrid Methods

Smooth or oscillatory components of error are relative to
mesh on which solution is defined

Component that appears smooth on fine grid may appear
oscillatory when sampled on coarser grid

If we apply smoother on coarser grid, then we may make
rapid progress in reducing this (now oscillatory) component
of error

After few iterations of smoother, results can then be
interpolated back to fine grid to produce solution that has
both higher-frequency and lower-frequency components of
error reduced

Michael T. Heath Scientific Computing 91 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Multigrid Methods, continued

Multigrid methods : This idea can be extended to multiple
levels of grids, so that error components of various
frequencies can be reduced rapidly, each at appropriate
level

Transition from finer grid to coarser grid involves restriction
or injection

Transition from coarser grid to finer grid involves
interpolation or prolongation

Michael T. Heath Scientific Computing 92 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Residual Equation

If ˆx is approximate solution to Ax = b, with residual
r = b�A

ˆ

x, then error e = x� ˆ

x satisfies equation
Ae = r

Thus, in improving approximate solution we can work with
just this residual equation involving error and residual,
rather than solution and original right-hand side

One advantage of residual equation is that zero is
reasonable starting guess for its solution

Michael T. Heath Scientific Computing 93 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Two-Grid Algorithm

1 On fine grid, use few iterations of smoother to compute
approximate solution ˆ

x for system Ax = b

2 Compute residual r = b�A

ˆ

x

3 Restrict residual to coarse grid

4 On coarse grid, use few iterations of smoother on residual
equation to obtain coarse-grid approximation to error

5 Interpolate coarse-grid correction to fine grid to obtain
improved approximate solution on fine grid

6 Apply few iterations of smoother to corrected solution on
fine grid

Michael T. Heath Scientific Computing 94 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Multigrid Methods, continued

Multigrid method results from recursion in Step 4: coarse
grid correction is itself improved by using still coarser grid,
and so on down to some bottom level

Computations become progressively cheaper on coarser
and coarser grids because systems become successively
smaller

In particular, direct method may be feasible on coarsest
grid if system is small enough

Michael T. Heath Scientific Computing 95 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Cycling Strategies

Common strategies for cycling through grid levels

Michael T. Heath Scientific Computing 96 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Cycling Strategies, continued

V-cycle starts with finest grid and goes down through
successive levels to coarsest grid and then back up again
to finest grid

W-cycle zig-zags among lower level grids before moving
back up to finest grid, to get more benefit from coarser
grids where computations are cheaper

Full multigrid starts at coarsest level, where good initial
solution is easier to come by (perhaps by direct method),
then bootstraps this solution up through grid levels,
ultimately reaching finest grid

Michael T. Heath Scientific Computing 97 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Multigrid Methods, continued

By exploiting strengths of underlying iterative smoothers
and avoiding their weaknesses, multigrid methods are
capable of extraordinarily good performance, linear in
number of grid points in best case

At each level, smoother reduces oscillatory component of
error rapidly, at rate independent of mesh size h, since few
iterations of smoother, often only one, are performed at
each level

Since all components of error appear oscillatory at some
level, convergence rate of entire multigrid scheme should
be rapid and independent of mesh size, in contrast to other
iterative methods

Michael T. Heath Scientific Computing 98 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Multigrid Methods, continued

Moreover, cost of entire cycle of multigrid is only modest
multiple of cost of single sweep on finest grid

As result, multigrid methods are among most powerful
methods available for solving sparse linear systems arising
from PDEs

They are capable of converging to within truncation error of
discretization at cost comparable with fast direct methods,
although latter are much less broadly applicable

Michael T. Heath Scientific Computing 99 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Direct vs. Iterative Methods

Direct methods require no initial estimate for solution, but
take no advantage if good estimate happens to be
available

Direct methods are good at producing high accuracy, but
take no advantage if only low accuracy is needed

Iterative methods are often dependent on special
properties, such as matrix being symmetric positive
definite, and are subject to very slow convergence for
badly conditioned systems; direct methods are more
robust in both senses

Michael T. Heath Scientific Computing 100 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Direct vs. Iterative Methods

Iterative methods usually require less work if convergence
is rapid, but often require computation or estimation of
various parameters or preconditioners to accelerate
convergence

Iterative methods do not require explicit storage of matrix
entries, and hence are good when matrix can be produced
easily on demand or is most easily implemented as linear
operator

Iterative methods are less readily embodied in standard
software packages, since best representation of matrix is
often problem dependent and “hard-coded” in application
program, whereas direct methods employ more standard
storage schemes

Michael T. Heath Scientific Computing 101 / 105

System Matrix for 2D Poisson Problem

with the further assumption of uniform grid spacing, ∆x = ∆y = h. We’ll also consider ho-
mogeneous Dirichlet boundary conditions, that is, u(x, y)|∂Ω ≡ 0. The respective unknowns
and data in this case are uij and fij , governed by the following system of equations

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)

= fij , (12)

for i, j ∈ [1, . . . , N]2.

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system
takes on the following matrix structure for ∆x = ∆y = h.

1
h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1

−1 4 −1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 4 −1

−1 4 −1
. . .

−1 −1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

−1 −1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1

−1 −1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

K2D

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u
11

u
21

.

.

.

.

.

.

uM1

u
12

u
22

.

.

.

.

.

.

uM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u
1N

u
2N

.

.

.

.

.

.

uMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
11

f
21

.

.

.

.

.

.

fM1

f
12

f
22

.

.

.

.

.

.

fM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
1N

f
2N

.

.

.

.

.

.

fMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

f

Note that K2D can be expressed as the sum of two systems, one associated with Kx coming
from δ2u

δx2 , and one associated with one associated with Ky coming from δ2u
δy2

. Specifically,
we can write

K2D = (Iy ⊗Kx) + (Ky ⊗ Ix), (13)

where we have introduced the Kronecker (or tensor) product, ⊗. For two matrices A and
B, their Kronecker product C = A⊗B is defined as the block matrix

C :=

⎛

⎜
⎜
⎜
⎜
⎝

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB
...

...
...

am1B am2B · · · · · · amnB

⎞

⎟
⎟
⎟
⎟
⎠

. (14)

4

with the further assumption of uniform grid spacing, ∆x = ∆y = h. We’ll also consider ho-
mogeneous Dirichlet boundary conditions, that is, u(x, y)|∂Ω ≡ 0. The respective unknowns
and data in this case are uij and fij , governed by the following system of equations

−
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)

= fij , (12)

for i, j ∈ [1, . . . , N]2.

Assuming a lexicographical ordering in which the i- (x-) index advances fastest, the system
takes on the following matrix structure for ∆x = ∆y = h.

1
h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 −1 −1

−1 4 −1 −1

−1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 4 −1

−1 4 −1
. . .

−1 −1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

−1 −1 4
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −1

−1 −1 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

K2D

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u
11

u
21

.

.

.

.

.

.

uM1

u
12

u
22

.

.

.

.

.

.

uM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

u
1N

u
2N

.

.

.

.

.

.

uMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

u

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f
11

f
21

.

.

.

.

.

.

fM1

f
12

f
22

.

.

.

.

.

.

fM2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f
1N

f
2N

.

.

.

.

.

.

fMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

f

Note that K2D can be expressed as the sum of two systems, one associated with Kx coming
from δ2u

δx2 , and one associated with one associated with Ky coming from δ2u
δy2

. Specifically,
we can write

K2D = (Iy ⊗Kx) + (Ky ⊗ Ix), (13)

where we have introduced the Kronecker (or tensor) product, ⊗. For two matrices A and
B, their Kronecker product C = A⊗B is defined as the block matrix

C :=

⎛

⎜
⎜
⎜
⎜
⎝

a11B a12B · · · · · · a1nB
a21B a22B · · · · · · a2nB
...

...
...

am1B am2B · · · · · · amnB

⎞

⎟
⎟
⎟
⎟
⎠

. (14)

4

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Computational Cost for k ⇥ k (⇥k) Grid

method 2-D 3-D
Dense Cholesky k

6
k

9

Jacobi k

4
log k k

5
log k

Gauss-Seidel k

4
log k k

5
log k

Band Cholesky k

4
k

7

Optimal SOR k

3
log k k

4
log k

Sparse Cholesky k

3
k

6

Conjugate Gradient k

3
k

4

Optimal SSOR k

2.5
log k k

3.5
log k

Preconditioned CG k

2.5
k

3.5

Optimal ADI k

2
log

2
k k

3
log

2
k

Cyclic Reduction k

2
log k k

3
log k

FFT k

2
log k k

3
log k

Multigrid V-cycle k

2
log k k

3
log k

FACR k

2
log log k k

3
log log k

Full Multigrid k

2
k

3

Michael T. Heath Scientific Computing 102 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Comparison of Methods

For those methods that remain viable choices for finite
element discretizations with less regular meshes,
computational cost of solving elliptic boundary value
problems is given below in terms of exponent of n (order of
matrix) in dominant term of cost estimate

method 2-D 3-D
Dense Cholesky 3 3

Band Cholesky 2 2.33

Sparse Cholesky 1.5 2

Conjugate Gradient 1.5 1.33

Preconditioned CG 1.25 1.17

Multigrid 1 1

Michael T. Heath Scientific Computing 103 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Comparison of Methods, continued

Multigrid methods can be optimal, in sense that cost of
computing solution is of same order as cost of reading
input or writing output

FACR method is also optimal for all practical purposes,
since log log k is effectively constant for any reasonable
value of k

Other fast direct methods are almost as effective in
practice unless k is very large

Despite their higher cost, factorization methods are still
useful in some cases due to their greater robustness,
especially for nonsymmetric matrices

Methods akin to factorization are often used to compute
effective preconditioners

Michael T. Heath Scientific Computing 104 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Software for PDEs

Methods for numerical solution of PDEs tend to be very
problem dependent, so PDEs are usually solved by custom
written software to take maximum advantage of particular
features of given problem

Nevertheless, some software does exist for some general
classes of problems that occur often in practice

In addition, several good software packages are available
for solving sparse linear systems arising from PDEs as well
as other sources

Michael T. Heath Scientific Computing 105 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Gauss-Seidel Method

One reason for slow convergence of Jacobi method is that
it does not make use of latest information available
Gauss-Seidel method remedies this by using each new
component of solution as soon as it has been computed

x

(k+1)

i

=

0

@
b

i

�
X

j<i

a

ij

x

(k+1)

j

�
X

j>i

a

ij

x

(k)

j

1

A
/a

ii

Using same notation as before, Gauss-Seidel method
corresponds to splitting M = D +L and N = �U

Written in matrix terms, this gives iteration scheme

x

(k+1)

= D

�1

⇣
b�Lx

(k+1) �Ux

(k)

⌘

= (D +L)

�1

⇣
b�Ux

(k)

⌘

Michael T. Heath Scientific Computing 71 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Gauss-Seidel Method, continued

In addition to faster convergence, another benefit of
Gauss-Seidel method is that duplicate storage is not
needed for x, since new component values can overwrite
old ones immediately

On other hand, updating of unknowns must be done
successively, in contrast to Jacobi method, in which
unknowns can be updated in any order, or even
simultaneously

If we apply Gauss-Seidel method to solve system of finite
difference equations for Laplace equation, we obtain

u

(k+1)

i,j

=

1

4

⇣
u

(k+1)

i�1,j

+ u

(k+1)

i,j�1

+ u

(k)

i+1,j

+ u

(k)

i,j+1

⌘

Michael T. Heath Scientific Computing 72 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Gauss-Seidel Method, continued

Thus, we again average solution values at four surrounding
grid points, but always use new component values as soon
as they become available, rather than waiting until current
iteration has been completed

Gauss-Seidel method does not always converge, but it is
guaranteed to converge under conditions that are often
satisfied in practice, and are somewhat weaker than those
for Jacobi method (e.g., if matrix is symmetric and positive
definite)

Although Gauss-Seidel converges more rapidly than
Jacobi, it is often still too slow to be practical

< interactive example >

Michael T. Heath Scientific Computing 73 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Successive Over-Relaxation

Convergence rate of Gauss-Seidel can be accelerated by
successive over-relaxation (SOR), which in effect uses
step to next Gauss-Seidel iterate as search direction, but
with fixed search parameter denoted by !

Starting with x

(k), first compute next iterate that would be
given by Gauss-Seidel, x(k+1)

GS

, then instead take next
iterate to be

x

(k+1)

= x

(k)

+ !(x

(k+1)

GS

� x

(k)

)

= (1� !)x

(k)

+ !x

(k+1)

GS

which is weighted average of current iterate and next
Gauss-Seidel iterate

Michael T. Heath Scientific Computing 74 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Successive Over-Relaxation, continued

! is fixed relaxation parameter chosen to accelerate
convergence

! > 1 gives over-relaxation, ! < 1 gives under-relaxation,
and ! = 1 gives Gauss-Seidel method

Method diverges unless 0 < ! < 2, but choosing optimal !
is difficult in general and is subject of elaborate theory for
special classes of matrices

Michael T. Heath Scientific Computing 75 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Successive Over-Relaxation, continued

Using same notation as before, SOR method corresponds
to splitting

M =

1

!

D +L, N =

✓
1

!

� 1

◆
D �U

and can be written in matrix terms as

x

(k+1)

= x

(k)

+ !

⇣
D

�1

(b�Lx

(k+1) �Ux

(k)

)� x

(k)

⌘

= (D + !L)

�1

((1� !)D � !U)x

(k)

+ ! (D + !L)

�1

b

< interactive example >

Michael T. Heath Scientific Computing 76 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Example: Wave Equation

Consider explicit finite difference scheme for wave
equation given previously

Characteristics of wave equation are straight lines in (t, x)

plane along which either x+

p
c t or x�p

c t is constant

Domain of dependence for wave equation for given point is
triangle with apex at given point and with sides of slope
1/

p
c and �1/

p
c

Michael T. Heath Scientific Computing 37 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Time-Dependent Problems
Time-Independent Problems

Example: Wave Equation

CFL condition implies step sizes must satisfy

�t  �xp
c

for this particular finite difference scheme

unstable stable

< interactive example >

Michael T. Heath Scientific Computing 38 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Example: Iterative Refinement

Iterative refinement is example of stationary iterative
method

Forward and back substitution using LU factorization in
effect provides approximation, call it B�1, to inverse of A

Iterative refinement has form

x

k+1

= x

k

+B

�1

(b�Ax

k

)

= (I �B

�1

A)x

k

+B

�1

b

So it is stationary iterative method with

G = I �B

�1

A, c = B

�1

b

It converges if
⇢(I �B

�1

A) < 1

Michael T. Heath Scientific Computing 65 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Splitting

One way to obtain matrix G is by splitting

A = M �N

with M nonsingular

Then take G = M

�1

N , so iteration scheme is

x

k+1

= M

�1

Nx

k

+M

�1

b

which is implemented as

Mx

k+1

= Nx

k

+ b

(i.e., we solve linear system with matrix M at each
iteration)

Michael T. Heath Scientific Computing 66 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Convergence

Stationary iteration using splitting converges if

⇢(G) = ⇢(M

�1

N) < 1

and smaller spectral radius yields faster convergence

For fewest iterations, should choose M and N so
⇢(M

�1

N) is as small as possible, but cost per iteration is
determined by cost of solving linear system with matrix M ,
so there is tradeoff

In practice, M is chosen to approximate A in some sense,
but is constrained to have simple form, such as diagonal or
triangular, so linear system at each iteration is easy to
solve

Michael T. Heath Scientific Computing 67 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Jacobi Method

In matrix splitting A = M �N , simplest choice for M is
diagonal of A

Let D be diagonal matrix with same diagonal entries as A,
and let L and U be strict lower and upper triangular
portions of A

Then M = D and N = �(L+U) gives splitting of A

Assuming A has no zero diagonal entries, so D is
nonsingular, this gives Jacobi method

x

(k+1)

= D

�1

⇣
b� (L+U)x

(k)

⌘

Michael T. Heath Scientific Computing 68 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Jacobi Method, continued

Rewriting this scheme componentwise, we see that Jacobi
method computes next iterate by solving for each
component of x in terms of others

x

(k+1)

i

=

0

@
b

i

�
X

j 6=i

a

ij

x

(k)

j

1

A
/a

ii

, i = 1, . . . , n

Jacobi method requires double storage for x, since old
component values are needed throughout sweep, so new
component values cannot overwrite them until sweep has
been completed

Michael T. Heath Scientific Computing 69 / 105

Partial Differential Equations
Numerical Methods for PDEs

Sparse Linear Systems

Direct Methods
Iterative Methods
Comparison of Methods

Example: Jacobi Method

If we apply Jacobi method to system of finite difference
equations for Laplace equation, we obtain

u

(k+1)

i,j

=

1

4

⇣
u

(k)

i�1,j

+ u

(k)

i,j�1

+ u

(k)

i+1,j

+ u

(k)

i,j+1

⌘

so new approximate solution at each grid point is average
of previous solution at four surrounding grid points

Jacobi method does not always converge, but it is
guaranteed to converge under conditions that are often
satisfied in practice (e.g., if matrix is strictly diagonally
dominant)

Unfortunately, convergence rate of Jacobi is usually
unacceptably slow < interactive example >

Michael T. Heath Scientific Computing 70 / 105

