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Optimization Problems Definitions
Existence and Uniqueness
Optimality Conditions

Optimization

@ Given function f: R —+ R, and set S C R", find x* € S
such that f(x*) < f(x) forallz € S

@ x* is called minimizer or minimum of f

@ |t suffices to consider only minimization, since maximum of
f is minimum of — f

@ Objective function f is usually differentiable, and may be
linear or nonlinear

@ Constraint set S is defined by system of equations and
iInequalities, which may be linear or nonlinear

@ Points x € S are called feasible points

@ If S = R", problem is unconstrained 1
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Optimization Problems

@ General continuous optimization problem:
min f(x) subjectto g(x) =0 and h(x) <0

where f: R" - R, g: R*" - R™, h: R" - R?
@ Linear programming: f, g, and h are all linear

@ Nonlinear programming . at least one of f, g, and h is
nonlinear

1
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Examples: Optimization Problems

@ Minimize weight of structure subject to constraint on its
strength, or maximize its strength subject to constraint on
its weight

@ Minimize cost of diet subject to nutritional constraints

@ Minimize surface area of cylinder subject to constraint on
Its volume:

min f(x1,x2) = 2nx1(x1 + 22)
T1,T2

subjectto  g(z1,x2) = T2z —V =10

where z; and z, are radius and height of cylinder, and V' is
required volume T
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Local vs Global Optimization

@ x* € Sis global minimum if f(x*) < f(x) forallxz € S

@ x* € Sis local minimum if f(x*) < f(«) for all feasible x in
some neighborhood of x*

I

local minimum

I

global minimum 1
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Global Optimization

@ Finding, or even verifying, global minimum is difficult, in
general

@ Most optimization methods are designed to find local
minimum, which may or may not be global minimum

@ [f global minimum is desired, one can try several widely
separated starting points and see if all produce same
result

@ For some problems, such as linear programming, global
optimization is more tractable

i
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Existence of Minimum

@ If f is continuous on closed and bounded set S C R", then
f has global minimum on S

@ If S is not closed or is unbounded, then f may have no
local or global minimum on S

@ Continuous function f on unbounded set S C R" is
coercive if
lim f(x) =+o0

]| =00

i.e., f(x) must be large whenever ||x|| is large

@ If f is coercive on closed, unbounded set S C R"™, then f
has global minimum on S
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An Example of a Coercive Function

Xx=-1.6:.1:1.5; y=-1.6:.1:1.7;
[X,Y]=ndgrid(x,vy):; /Goestoooasllxlléoo

u = -3*exp(-X.*X-Y.*Y).*sin(3*X-Y) @)-AZH@

................

hold off; mesh(X,Y,u) : : : : : :
hold on ; contour(X,Y¥,u,30) 12 e T T - § § § ““wmiﬂ

| LT N : : : Y/
[ | BN o S SV SR i A
: § : : AN /

= T
[
i
]
i
Al

1
i =~ Wil
| \ — |
- L~ +
|-

s
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Level Sets

@ Level set for function f: S C R” — R is set of all points in
S for which f has some given constant value

@ For given v € R, sublevel set is

Ly={zeS: f(x) <~}

@ |f continuous function f on S C R™ has nonempty sublevel
set that is closed and bounded, then f has global minimum
on S

@ If S is unbounded, then f is coercive on S if, and only if, all
of its sublevel sets are bounded (No open contours...)

1
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Unigueness of Minimum

@ Set S C R"is convex if it contains line segment between
any two of its points

@ Function f: S CR"™ — R is convex on convex set S if its
graph along any line segment in S lies on or below chord
connecting function values at endpoints of segment

@ Any local minimum of convex function f on convex set
S C R" is global minimum of f on S

@ Any local minimum of strictly convex function f on convex
set S C R" is unique global minimum of f on S

1
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Convex Domains and Convex Functions
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nonconvex convex strictly convex
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First-Order Optimality Condition

@ For function of one variable, one can find extremum by
differentiating function and setting derivative to zero

@ Generalization to function of n variables is to find critical
point, i.e., solution of nonlinear system

Vf(x)=0

where V f(x) is gradient vector of f, whose ith component
is 0f(x)/0x;

@ For continuously differentiable f: .S C R™ — R, any interior
point =* of S at which f has local minimum must be critical
point of f

@ But not all critical points are minima: they can also be
maxima or saddle points 1
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First-Order Optimality Condition

@ But not all critical points are minima: they can also be
maxima or saddle points

« Saddle points in higher dimensions are more common than zero-
slope inflection points in 1D

2.5
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Note the open contours....
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First-Order Optimality Condition

@ For function of one variable, one can find extremum by
differentiating function and setting derivative to zero

@ Generalization to function of n variables is to find critical
point, i.e., solution of nonlinear system

Vf(x)=0

« We use the solution techniques of Chapter § to solve this
nonlinear system.

1
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Second-Order Optimality Condition

@ For twice continuously differentiable f: S C R" — R, we
can distinguish among critical points by considering
Hessian matrix H¢(x) defined by

2 T
(Hy (@) = 550

which is symmetric

@ At critical point =*, if H¢(x*) is
@ positive definite, then x* is minimum of f
@ negative definite, then x* is maximum of f
@ indefinite, then x* is saddle point of f
e singular, then various pathological situations are possible 1
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Classitying Critical Points

e Example 6.5 from the text:
f(x) = 223 + 327 + 122129 + 325 — 623 + 6.

e Gradient:

622 + 621 + 122
V(x) [ 1 : 2]-

1221 + 629 — 6
e Hessian is symmetric:
0% f 2 f
H . [ 8$18$1 89018:1:2 ] L [ 12.T1 —|— 6 ]_2 ]
- = :

2 f o2 f 12 0
0x10xe O0x9012

e Critical points, solutions to V f(x) = 0 are
x* = [1,-1]", and
x* = [2,-3]".



e At first critical point, z* = [1, —1]T7

18 12

does not have positive eigenvalues, so [1, —1]! is a saddle point.

e At second critical point, x* = |2, —3]T,

30 12

does have positive eigenvalues, so [2, —3|! is a local minimum.



Example 6.5 from text

f(x) = 227 + 327 + 122129 + 325 — 6252 + 6.




Example 6.5 from text

> — 6y + 6.
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e First critical point, 2* = [1, —1]7, is a saddle point. Hessian not SPD.



Example 6.5 from text

f(x) = 227 + 327 + 122129 + 325 — 6252 + 6.

30
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e First critical point, 2* = [1, —1]7, is a saddle point. Hessian not SPD.



Example 6.5 from text

x) = 22° + 327 + 122129 + 325 — 629 + 6.
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e Second critical point, z* = [2, —3]7, is a local minimum. Hessian is SPD.
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Second-Order Optimality Condition

@ For twice continuously differentiable f: S C R" — R, we
can distinguish among critical points by considering
Hessian matrix H¢(x) defined by

2 T
(Hy (@) = 550

which is symmetric

@ At critical point =*, if H¢(x*) is
@ positive definite, then x* is minimum of f
@ negative definite, then x* is maximum of f
@ indefinite, then x* is saddle point of f
e singular, then various pathological situations are possible 1

Michael T. Heath Scientific Computing




Example of Singular Hessian in 1D

e Consider,
f@) = (-1
of _ of 3
— — = 4(z —1)° = h =" =1
Vf . 5 (x — 1) 0 when x = x
0 f 0*f 2
Hi; = = 2L _1pE-1? =0
& 0r,x; Ox? (x=1) 0

Here, the Hessian is singular at x = 2* and z* is a minimizer of f.

e However, if

flz) = (x—1)
_ af _ g _ . 2 T S
Vf = o~ o 3(x—1)* = Owhen x =2* = 1.
H. = f _82_]0_6( ~1) =0
Yo Qw022 * -

Here, the Hessian is singular at x = x* and z* is a not a minimizer of f.
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Constrained Optimality

@ If problem is constrained, only feasible directions are
relevant

@ For equality-constrained problem
min f(x) subjectto g(x) =0

where f: R" — Rand g: R" — R™, with m < n, necessary
condition for feasible point * to be solution is that negative
gradient of f lie in space spanned by constraint normals,

~Vf(@*) = JL (x*)A

where J, is Jacobian matrix of g, and X is vector of
Lagrange multipliers

@ This condition says we cannot reduce objective function |
without violating constraints 1
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Constrained Optimality, continued

@ Lagrangian function £: R"™™ — R, is defined by
L(z,A) = f(z) + X g(x)

@ lts gradient is given by
VL(x,A) = [

@ lts Hessian is given by

where
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Constrained Optimality, continued

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

Vi(z)+ JL ()

VL(x,\) = g(z)

1
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Equality Constraints: Case g(x)=scalar.

min f(x) subject to g(x) = 0.

e Lagrangian
L(x,A) = f(x) + Ag(x)

A = Lagrange multiplier

oL Vf+ AVyg 0
e ()= (7))
o 9

at critical point (x*, \*).

e Note, Vf(x*) # 0.

e Instead, Vfix*) = —\"Vg(x").

e The gradient of f at x* is a multiple of the gradient of g.



Constrained Optimality Example, g(x) a Scalar.

d Comment on: “This condition says we cannot reduce objective
function without violating constraints.”

3 A key point is that, x, Vfis parallel to Vg

If there are multiple constraints, then Vfin span{Vg,} = J," A

~VID) = Jg A

_of _ f: agk)\

k
=1 0%;

".I-'.I'.- \ 'I‘
HARi i} -900 =0




Constrained Optimality Example, g(x) a Scalar.

3 Here, we see the gradients of f and g at a point that is not x".

d Clearly, we can make more progess in reducing f(x) by moving along
the g(x)=0 contour until Vfis parallel to Vqg.

((\

L
II|||I II

g% =0




Example: Two Equality Constraints

min f(x) subject to g1(x) = 0 and g¢go(x) = 0.

e Lagrangian
ﬁ(X, )\) = f(X) + )\191()() -+ )\QQQ(X).

e First-order conditions

oc L+ 3 A
VL = v —

oL o O+(91>
g2

O
B (Vf + ng)\>
g
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Constrained Optimality, continued

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

V(2. A) = V() + J] ()X

g(x) =0

@ Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of £ is saddle point rather than
minimum or maximum

@ Critical point (x*, A*) of L is constrained minimum of f if
B(xz*, \*) is positive definite on null space of J,(x*)

@ If columns of Z form basis for null space, then test
projected Hessian Z1 B Z for positive definiteness

Michael T. Heath Scientific Computing
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Constrained Optimality, continued

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

xr ) xIr
v = | )g+(w‘;g( N

=0

@ Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of £ is saddle point rather than
minimum or maximum

@ Critical point (x*, A*) of L is constrained minimum of f if
B(xz*, \*) is positive definite on null space of J,(x*)

 Note: null space of Jg(x’) is the set of vectors tangent to the
constraint surface (or surfaces, if more than one g present).
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Constrained Optimality Example, g(x) a Scalar.

d Comment on: “This condition says we cannot reduce objective
function without violating constraints.”

3 A key point is that, x, Vfis parallel to Vg
4 If there are multiple constraints, then Vfin span{Vg,} = J," A

W

~VID) = Jg A
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Constrained Optimality, continued

@ If inequalities are present, then KKT optimality conditions
also require nonnegativity of Lagrange multipliers
corresponding to inequalities, and complementarity
condition

Karush-Kuhn-Tucker

VaL(z",A") =0,

() =0,

= 1

(z*) <0,
A; >0,i=m+1,...,m+ p inequality Lagrange multipliers

Arhi(z*)=0,i=m+1,...,m+ p complementarity condition.

1
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Inequality Constraint and Sign of A

3 A key point is that, at x”, Vfis parallel to Vh
A If there are multiple constraints, then Vfin span{Vh,}=J,” A

i VI = I

2+ \||||I| II||.I.' "."';fr/ 6f m 8hk
| e = o

1 b ({95132 k=1 8£UZ

u"w.'.'f":\

1111 ||I|




Inequality Constraint and Sign of A

e If constraint is active (h(x*) = 0) then
V f and VA point in opposite directions.

e Vf+AX*Vh=0.

T (x*)A

[
(]

W L hx) =0

e ‘ ’|
I
."l,.' ] III II IIII
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Sensitivity and Conditioning

@ Function minimization and equation solving are closely
related problems, but their sensitivities differ

@ In one dimension, absolute condition number of root x* of
equation f(x) =0is 1/|f'(x*)|, so if | f(2)] < ¢, then
|z — x*| may be as large as ¢/|f/(z*)]

@ For minimizing f, Taylor series expansion
f@) = fla*+h)
= f(@*) + f'(@")h+ § f(a")h* + O(h?)

shows that, since f'(x*) =0, if |f(2) — f(x*)| <, then
|2 — z*| may be as large as \/2¢/|f"(z*)|

@ Thus, based on function values alone, minima can be
computed to only about half precision I
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Consider f=1-cos(x)

E: |

x10

1

0.9F

0.8

0.7F

0.6

0.5F

0.4

0.3f

0.2

0.1}

is = 0.5 0 05 1 15
x10°7

3 As you zoom in, f(x)=>0 quadratically, but x>x only linearly.

A So, if [f(x)-f(X)] ~ €, then || x=Xx"|| = O(€"?)



Consider f=1-cos(x)

E: |

x10

1
0.9}
0.8
0.7}
0.6
0.5f
0.4}
0.3f

0.2

AV — 172

4

is = 0.5 0 05 1 15
x10°7

3 As you zoom in, f(x)=>0 quadratically, but x=>x" only linearly

A So, if [f(x)-f(X)] ~ €, then || x=Xx"|| = O(€"?)



Sensitivity of Minimization
Terminate search when
[f(@"+ Az) — f(2¥)] < e
Taylor series:

* * / * AZCQ 1 * 3
flz* + Az) = f(a:)+Amf(a:)+Tf (") + O(Az?)

Az® o f(a* + Az) — f(a¥)
2 £ (z*)
2€
A ~
Al @)

e So, if € = €)7, can expect accuracy to approximately ,/eps.

e Question: Is a small f” good? Or bad?



Example: Minimize Cost over Some Design Parameter, x

1.5

Cost

0.5

Design Parameter

155



Example: Minimize Cost over Some Design Parameter, x

1.5

Cost | |

|
05}t ' |

Design Parameter

3 While having f’(x") makes it difficult to find the optimal x’, it in fact

IS a happy circumstance because it gives you liberty to add
additional constraints at no cost.

d So, often, having a broad minimum is good.



Methods for One-Dimensional Problems

d Demonstrate
A Basic techniques
Q Bracketing
A Convergence rates

A Useful for line search in multi-dimensional problems



Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Unimodality

@ For minimizing function of one variable, we need “bracket”
for solution analogous to sign change for nonlinear
equation

@ Real-valued function f is unimodal on interval [a, b] if there
IS unique x* € |a, b] such that f(z*) is minimum of f on
la, b], and f is strictly decreasing for x < x*, strictly
increasing for z* < x

@ Unimodality enables discarding portions of interval based
on sample function values, analogous to interval bisection

1
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Golden Section Search
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Golden Section Search
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Golden Section Search

@ Suppose f is unimodal on |a, b], and let z; and x2 be two
points within [a, b], with 21 < x2

@ Evaluating and comparing f(x1) and f(x2), we can discard
either (3, b] or |a, z1), with minimum known to lie in
remaining subinterval

@ To repeat process, we need compute only one new
function evaluation

@ To reduce length of interval by fixed fraction at each
iteration, each new pair of points must have same
relationship with respect to new interval that previous pair
had with respect to previous interval
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Golden Section Search, continued

@ To accomplish this, we choose relative positions of two
pointsas 7 and 1 — 7, where 72 =1 — 7, so
7= (vb—-1)/2~0.618and 1 — 7 ~ 0.382

@ Whichever subinterval is retained, its length will be 7
relative to previous interval, and interior point retained will
be at position either = or 1 — 7 relative to new interval

@ To continue iteration, we need to compute only one new
function value, at complementary point

@ This choice of sample points is called golden section
search

@ Golden section search is safe but convergence rate is only
linear, with constant C' ~ 0.618 Requires Unimodality!
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Golden Section Search

4 f(x) unimodal on [a,b].

. _ f, > f, J——
d Subdivide [a,b] into 3 parts.

Q Iff, >f, discard (a,x,)

1 Choose new point in larger of remaining two intervals: (x4,X,) or (X,,b).

Q - X, and x, should be closer to center and not at 1/3 , 2/3.




Golden Section Geometry

d Want new section [1-7, 7] to have same relation as [0,1- 7] to [0,1].

— L — F
0 0.382 0.618 1

1-7 T

T—(l—T)_l—T

T 1

or — 1l=1 — 7°

74+ —1=0

—1++v14+4 —1
= +2 L :\/52 = 0.618

T



Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Golden Section Search, continued
= (V5-1)/2
r1=a+(1—=7)b—a); fi = f(r1)
T2 =a+7(b—a); fo = f(xz)

Il'

|

|

while ((b —a) > tol) do |
if (f1 > f2) then :

a = I

1 = I2 = e
fi=Jf2
ro=a+7(b—a) | T |
| f2 = f(x2) (;- Tll il?lz ll)
eise
b= 2, i i
T2 = I | | | |
fo = fi a T T2 b
r1=a+ (1 —7)(b—a) | | |
fi=f(z1) | lTT | |
end Cll ZI?|1 £l?|2 [I) ]

end
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Example: Golden Section Search

Use golden section search to minimize

f(z) = 0.5 — zexp(—z?)
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Example, continued

One-Dimensional Optimization

f1

Golden Section Search
Successive Parabolic Interpolation

Newton’s Method

L2

f2

0.074
0.122
0.074
0.074
0.085
0.074
0.071
0.072
0.071
0.071

Michael T. Heath

1.236
0.764
0.944
0.764
0.652
0.695
0.721
0.695
0.705
0.711

0.232
0.074
0.113
0.074
0.074
0.071
0.071
0.071
0.071
0.071

Scientific Computing
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Successive Parabolic Interpolation

@ Fit quadratic polynomial to three function values

@ Take minimum of quadratic to be new approximation to
minimum of function

/

i
§
i
!
i

/
|
/]
r
!

l
I
|
|
|
|
|
l

w
@ New point replaces oldest of three previous points and
process is repeated until convergence

@ Convergence rate of successive parabolic interpolation is
superlinear, with r ~ 1.324 1
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Example: Successive Parabolic Interpolation

Use successive parabolic interpolation to minimize

f(z) = 0.5 — zexp(—z?)
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Example, continued

v f(Tk)

0.000 0.500

0.600 0.081

1.200 0.216 — Not monotone
0.754 0.073 > ,

Superlinear

0.721 0.071

0.692 0.071

0.707 0.071

Successive Parabolic Interpolation is Newton’s Method applied to a
quadratic model of the data. r=1.324

We turn to Newton’s method next, r=2.
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Matlab: Successive Parabolic Interpolation — Replace Oldest

function x=parab(a,b,c);
fa=f(a); fb=f(b); fc=f(c); x=1; fx=f(x);
for k=1:15;
num = ((fb-fc)*(b-a)”2-(fb-fa)*(b-c)”2); % '
= %

den = 2*((fb-fc)*(b-a)-(fb-fa)*(b-c)); "
x=b-num/den; fx = f(x);

==

c=b; fc=fb; b=a; fb=fa; a=x; fa=fx; % Push c¢c off

end;



Matlab: Successive Parabolic Interpolation — Replace Oldest

function x=parab(a,b,c);

22
xx=a:.001l:c; yy=f(xx); a0l A
hold off; plot(xx,yy,'r-'); hold on; 5l l
format compact; format longe; 1r Vo
141 §
fa=f(a); fb=f(b); fc=f(c); x=1; fx=f(x); al f(CU) |
‘l
for k=1:15; o / I
xo=x; fo=fx; 8-& .
(38 \ .
num = ((fb-fc)*(b-a)"2-(fb-fa)*(b-c)*2); % m' T e l
den = 2*((fb-fc)*(b-a)-(fb-fa)*(b-c)); % m" 2 05 i 5 2 25 3
x=b-num/den; fx = f(x);
c=b; fc=fb; b=a; fb=fa; a=x; fa=fx; % Push c off
dx=x0-x; df=fo-fx; [ x fx dx df ] $ Plot 10°
10° - — 1
kk (k)=k; dk(k)=abs(dx);fk(k)=abs(df); e N L7 - | T
plot(x,fx, 'kx'); hold on 10* | T .
if abs(df) < 20*eps; break; end; Y TN el i

e

end; 10° - \. .
pause 0t | — | \\\
hold off; semilogy(kk,dk,'r.-',kk,fk,'b.=-") g 'fk_F]- ji} AN
function fx=f(x); 10"} \\
exx = exp(-x.*x); fx = .5 - x.*exx; aa| \

fx = 1./sin(x);

fx = exp(x) + 1./x; e A



Golden Section Search

Successive Parabolic Interpolation
Newton’s Method

One-Dimensional Optimization

Newton’s Method

@ Another local quadratic approximation is truncated Taylor
series

flo+h) ~ f(a) + £+ g

@ By differentiation, minimum of this quadratic function of A is
given by h = —f'(z)/f"(x)

@ Suggests iteration scheme

Trer1 = 2k — [ (zk)/ " (k)
which is Newton’s method for solving nonlinear equation
f'(x) =0
@ Newton’s method for finding minimum normally has

quadratic convergence rate, but must be started close
enough to solution to converge < interactive example > 1
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Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Example: Newton’s Method

@ Use Newton’s method to minimize f(z) = 0.5 — z exp(—2?)

@ First and second derivatives of f are given by

f'(x) = (22% — 1) exp(—a?)

and
f'(z) =2x(3 — 2:(32) exp(—xz)

@ Newton iteration for zero of f’ is given by
Tr1 = o — (207 — 1)/ (225 (3 — 227))
@ Using starting guess xy = 1, we obtain

. f(ag)
1.000 0.132
0.500 0.111
0.700 0.071 I
0.707 0.071
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Matlab Example: newton.m

format compact; format longe;
x=1; £=0;

for k=1:10;

fo = f£f; exx = exp(-x.*x); £ = .5 - x.*exx;
¥ fp = (2.*x.*x-1).%*exx;
¢ fpp = 2.*x.*(3-2.*X.%*X).*exx;

S = —(2.*x.*xX-1)/(2.*X.*%(3-2.*xX.%X));

X = X+s;

y = f-fo; [k x £ s y] % print convergence

end;



Golden Section Search
One-Dimensional Optimization Successive Parabolic Interpolation
Newton’s Method

Safeguarded Methods

@ As with nonlinear equations in one dimension,
slow-but-sure and fast-but-risky optimization methods can
be combined to provide both safety and efficiency

@ Most library routines for one-dimensional optimization are
based on this hybrid approach

@ Popular combination is golden section search and
successive parabolic interpolation, for which no derivatives
are required
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Matlab: Successive Parabolic Interpolation: Naive Bracketing

function x=parab(a,b,c);

22 T T T T T
xx=a:.001l:c; yy=f(xx); hold off; plot(xx,yy,'r-'); - b
format compact; format longe; o f_
fa=f(a); fb=f(b); fc=f(c); 18 ST
: flx)
x=1; fx=f(x); /s
12t / g
for k=1:90; m-m / |
num = ((fb-fc)*(b-a)"2-(fb-fa)*(b-c)"2); | /
den = ((fb-fc)*(b-a)-(fb-fa)*(b-c)); oo yd 7
xo=x; fo=fx; sl N - i
x=b-.5*num/den; fx = f£(x); N g
if x>b H 4 ’».___A__i__#_%_________.—-- |
if f£fx>fb; c=x; fc=£fx; else; 2 . . . .
a=b; fa=fb;b=x;fb=£fx; end; ! ’e ‘ ' : i ’
else o . . : : : , : , ,
if fx>fb; a=x; fa=fx; else;
c=b;fc=fb;b=x;fb=fx; end; 10° b oe—a i
end; N
dx=x0-x; df=fo-£fx; 10 - :‘_‘:’_‘ |xk-+]_ — :Ckl 1
[ x £x dx df ] 04 L \Hk =3E1ah i
kk(k)=k; dk(k)=abs(dx);fk(k)=abs(df); . .
plot(x,fx, 'kx'); hold on 0t | A e S |
! if abs(df)<20*eps; break; end; e ‘%‘%ma
end; 0° N o
pause el lxk\ |
hold off; semilogy(kk,dk,'r.-',kk,fk,'b.-") Lf _‘,f | .
function fx=f(x); .
exx = exp(-x.*x); fx = .5 - X.*exx; 10 T
fx = 1./sin(x); - . . . . . . . . !

fx = exp(x) + 1./x; 0 2 4 B 8 w1z 14 16 18 20



Convergence Behavior
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d Question 1: What type of convergence is this?

d Question 2: What does this plot say about conditioning of

mxin f(x)



Methods for Multi-Dimensional Problems



Unconstrained Optimization
Nonlinear Least Squares
Multi-Dimensional Optimization Constrained Optimization

Steepest Descent Method

@ Let f: R® — R be real-valued function of n real variables

@ At any point & where gradient vector is nonzero, negative
gradient, —V f(x), points downhill toward lower values of f

@ Infact, —V f(x) is locally direction of steepest descent: f
decreases more rapidly along direction of negative
gradient than along any other

@ Steepest descent method: starting from initial guess x,
successive approximate solutions given by

Tyl = T — oV f(xk)

where «y, is line search parameter that determines how far
to go in given direction 1
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Unconstrained Optimization
Nonlinear Least Squares
Multi-Dimensional Optimization Constrained Optimization

Steepest Descent, continued

@ Given descent direction, such as negative gradient,
determining appropriate value for oy, at each iteration is
one-dimensional minimization problem

Holin f(xr — o Vf(zy))

that can be solved by methods already discussed

@ Steepest descent method is very reliable: it can always
make progress provided gradient is nonzero

@ But method is myopic in its view of function’s behavior, and
resulting iterates can zigzag back and forth, making very
slow progress toward solution

@ In general, convergence rate of steepest descent is only
linear, with constant factor that can be arbitrarily close to 1 I
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Nonlinear Least Squares
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Example, continued
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Unconstrained Optimization
Nonlinear Least Squares
Multi-Dimensional Optimization Constrained Optimization

Example: Steepest Descent

@ Use steepest descent method to minimize

f(x) = 0.52% + 2.523

@ Gradientis given by Vf(x) = [xl ]

5:132

@ Taking xg = m , we have V f(xg) = [g]

@ Performing line search along negative gradient direction,

rg%n f(xg — gV f(xp))
exact minimum along line is given by oy = 1/3, so next
3.333]

—0.667

approximation is x; = [ 1
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Multi-Dimensional Optimization

Example, continued

Unconstrained Optimization
Nonlinear Least Squares

Constrained Optimization

Ty, f (k) Vf(xk)
5.000 1.000 | 15.000 | 5.000 5.000
3.333 —0.667 | 6.667 | 3.333 —3.333
2.222 0.444 | 2.963 | 2.222 2.222
1.481 —0.296 | 1.317 | 1.481 —1.481
0.988 0.198 | 0.585 | 0.988 0.988
0.658 —0.132 | 0.260 | 0.658 —0.658
0.439 0.088 | 0.116 | 0.439 0.439
0.293 —0.099 | 0.051 | 0.293 —0.293
0.195 0.039 | 0.023 | 0.195 0.195
0.130 —-0.026 | 0.010 | 0.130 —0.130

Michael T. Heath

Scientific Computing
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Unconstrained Optimization
Nonlinear Least Squares
Multi-Dimensional Optimization Constrained Optimization

Example, continued

< interactive example > T
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Newton’s Method

@ Broader view can be obtained by local quadratic
approximation, which is equivalent to Newton’s method

@ In multidimensional optimization, we seek zero of gradient,
so Newton iteration has form

Tpt1 = T — Hf_l(:ck)Vf(a:k)

where H(x) is Hessian matrix of second partial
derivatives of f,

{Hy(x)}ij = gx{(‘()zj

1
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Unconstrained Optimization
Nonlinear Least Squares
Multi-Dimensional Optimization Constrained Optimization

Newton’s Method, continued

@ Do not explicitly invert Hessian matrix, but instead solve
linear system

Hy(xy)sy = =V f(xr)
for Newton step si, then take as next iterate
Tl = Tk + Sk

@ Convergence rate of Newton’s method for minimization is
normally quadratic

@ As usual, Newton’s method is unreliable unless started
close enough to solution to converge

1
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Example: Newton’'s Method

@ Use Newton’s method to minimize
f(x) = 0.52% + 2.523

@ Gradient and Hessian are given by

5562

Vf(a:):[m] and Hf(il?)zl(l) g]

o Taking o — H - we have V f(x) = H

1 D

@ Linear system for Newton step is [(1) g] Sp = [:g] . SO

Tr1 =x9+ So = m + [:ﬂ = [8] , which is exact solution

for this problem, as expected for quadratic function
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Newton’s Method, continued

@ In principle, line search parameter is unnecessary with
Newton’s method, since quadratic model determines
length, as well as direction, of step to next approximate
solution

@ When started far from solution, however, it may still be
advisable to perform line search along direction of Newton
step s, to make method more robust (damped Newton)

@ Once iterates are near solution, then o, = 1 should suffice
for subsequent iterations

T
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Newton’s Method, continued

@ If objective function f has continuous second partial
derivatives, then Hessian matrix H s is symmetric, and
near minimum it is positive definite

@ Thus, linear system for step to next iterate can be solved in
only about half of work required for LU factorization

@ Far from minimum, H¢(x) may not be positive definite, so
Newton step s, may not be descent direction for function,
l.e., we may not have

Vf(a:k)Tsk <0

@ In this case, alternative descent direction can be
computed, such as negative gradient or direction of
negative curvature, and then perform line search

Michael T. Heath Scientific Computing




cg4.m demo



Unconstrained Optimization
Nonlinear Least Squares
Multi-Dimensional Optimization Constrained Optimization

Quasi-Newton Methods

@ Newton’s method costs O(n?) arithmetic and O(n?) scalar
function evaluations per iteration for dense problem

@ Many variants of Newton’s method improve reliability and
reduce overhead

@ Quasi-Newton methods have form
L+l — Lk — akB,;1Vf(wk)

where o4 Is line search parameter and By, is approximation
to Hessian matrix

@ Many quasi-Newton methods are more robust than
Newton’s method, are superlinearly convergent, and have
lower overhead per iteration, which often more than offsets
their slower convergence rate 1
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Secant Updating Methods

@ Could use Broyden’s method to seek zero of gradient, but
this would not preserve symmetry of Hessian matrix

@ Several secant updating formulas have been developed for
minimization that not only preserve symmetry in
approximate Hessian matrix, but also preserve positive
definiteness

@ Symmetry reduces amount of work required by about half,
while positive definiteness guarantees that quasi-Newton
step will be descent direction

T
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BFGS Method

One of most effective secant updating methods for minimization
is BFGS

xo = Initial guess
By = initial Hessian approximation
fork=0,1,2,...
Solve By s = —Vf(a:k) for Sk
Tp+1 = Tk + Sk
Y = V(@rt1) — V[(zk)
Byy1 = By + (yryi )/ (v k) — (Brsksy, Bi)/(si Bisy)
end

i
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BFGS Method, continued

@ In practice, factorization of By, is updated rather than B
itself, so linear system for s;, can be solved at cost of O(n?)
rather than O(n?) work

@ Unlike Newton’s method for minimization, no second
derivatives are required

@ Can start with By = I, so initial step is along negative
gradient, and then second derivative information is
gradually built up in approximate Hessian matrix over
successive iterations

@ BFGS normally has superlinear convergence rate, even
though approximate Hessian does not necessarily
converge to true Hessian

@ Line search can be used to enhance effectiveness

Michael T. Heath Scientific Computing
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Example: BFGS Method

@ Use BFGS to minimize f(x) = 0.52% + 2.522

@ Gradient is given by V f(x) = [;;1 ]
2

@ Taking =y = |5 1]T and By = I, initial step is negative
gradient, so

=antoo= [+ [ =[]

@ Updating approximate Hessian using BFGS formula, we

obtain
1. _ [0:667 0.333
"7 10.333 0.667
@ Then new step is computed and process is repeated 1
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Example: BFGS Method

T}, f(z) Vf(x)
5.000 1.000 | 15.000 5.000 5.000
0.000 —4.000 | 40.000 0.000 —20.000
—2.222 0.444 2.963 | —2.222 2.222
0.816 0.082 0.350 0.816 0.408
—0.009 —-0.015 0.001 | —0.009 —0.077
—0.001 0.001 0.000 | —0.001 0.005

@ Increase in function value can be avoided by using line
search, which generally enhances convergence

@ For quadratic objective function, BFGS with exact line
search finds exact solution in at most n iterations, where n
is dimension of problem < interactive example > I
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Conjugate Gradient Method

@ Another method that does not require explicit second
derivatives, and does not even store approximation to
Hessian matrix, is conjugate gradient (CG) method

@ CG generates sequence of conjugate search directions,
implicitly accumulating information about Hessian matrix

@ Foruadratic objective function,JCG is theoretically exact
after at most n iterations, where n is dimension of problem
@ CG is effective for general unconstrained minimization as

well

1
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Conjugate Gradient Method, continued

xo = Initial guess
go =V f(zo)
S0 — —4go
fork=0,1,2,...
Choose aj to minimize f(xy + aisi)
Tkl = Tk + QSk
gr+1 = Vf(Trs1)
Pr+1 = (glz—l—lgk—kl)/(gl{gk)
Sk+1 = —Gk+1 + Bk+18k
end

@ Alternative formula for S, is

Bkt1 = ((Gr+1 — gk)" Gr+1)/ (91 gk) 1
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Conjugate Gradient Method for Optimization
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Conjugate Gradient Method for Optimization
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Conjugate Gradient Method for Optimization
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Conjugate Gradient Method for Optimization
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Summary of CG for Optimization

A Conjugate gradient iteration produces the projection of x” onto span
(Sp Sq ---Sy)

A For constant SPD Hessian, H, CG iteration will be exact after:
Q niterations, or m < n iterations if H has only m distinct eigenvalues.

3 For nonconstant H, CG is not exact. However H->constant as x=>x

d Important to restart orthogonalization process after n iterations.
Q Otherwise, STHS will be k x k, with k > n, and will be singular.

d Method does not need H, nor b, only Vf, plus line search in the
direction s, (not g, := Vf, which would be steepest descent).
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Conjugate Gradient Method, continued

xo = Initial guess
go =V f(zo)
S0 — —4go
fork=0,1,2,...
Choose aj to minimize f(xy + aisi)
Tkl = Tk + QSk
gr+1 = Vf(Trs1)
Pr+1 = (glz—l—lgk—kl)/(gl{gk)
Sk+1 = —Gk+1 + Bk+18k
end

@ Alternative formula for S, is

Bkt1 = ((Gr+1 — gk)" Gr+1)/ (91 gk) 1
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Example: Conjugate Gradient Method

@ Use CG method to minimize f(z) = 0.52% + 2.523

5[132

@ Gradientis given by Vf(x) = [xl ]

@ Taking xy = [5 1}T, Initial search direction is negative
gradient,

so = —go = —V[f(xo) = [:g]

@ Exact minimum along line is given by ag = 1/3, so next

approximation is x; = [3.333 —0.667}T, and we compute
new gradient,

g1 = Vf(z1) = [_iﬁﬁﬁ] :
) ||
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Example, continued

@ So far there is no difference from steepest descent method

@ At this point, however, rather than search along new
negative gradient, we compute instead

B1 = (91 91)/(g5 go) = 0.444

which gives as next search direction

—3.333 —5]  [-5.556
S1=—g1+ P10 = [ 3.333] 044 [—5] - [ 1.111]

@ Minimum along this direction is given by a; = 0.6, which
gives exact solution at origin, as expected for quadratic
function

< interactive example > T
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Truncated Newton Methods

@ Another way to reduce work in Newton-like methods is to
solve linear system for Newton step by iterative method

@ Small number of iterations may suffice to produce step as
useful as true Newton step, especially far from overall
solution, where true Newton step may be unreliable
anyway

@ Good choice for linear iterative solver is CG method, which
gives step intermediate between steepest descent and
Newton-like step

@ Since only matrix-vector products are required, explicit
formation of Hessian matrix can be avoided by using finite
difference of gradient along given vector 1
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Nonlinear Least Squares

@ Given data (¢;,y;), find vector « of parameters that gives
“best fit” in least squares sense to model function f(t, x),
where f is nonlinear function of x

@ Define components of residual function

ri(w):yi—f(ti,w), izl,...,m

r(

so we want to minimize ¢(x) = x)r(x)

1

2

@ Gradient vector is V¢ (x) = J! (x)r(x) and Hessian matrix
IS

m

Hy(x) = J' (x)J (z) + Z ri(z) Hi(z)

where J(x) is Jacobian of r(x), and H;(x) is Hessian of
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Nonlinear Least Squares
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Nonlinear Least Squares

@ Given data (¢;,y;), find vector « of parameters that gives
“best fit” in least squares sense to model function f(t, x),
where f is nonlinear function of x

@ Define components of residual function

ri(e) =y, — f(t;,x), 1=1,....m

r(

so we want to minimize ¢(x) = x)r(x)

1

2

@ Gradient vector is V¢ (x) = J! (x)r(x) and Hessian matrix
IS

m

Hy(x) = J"(x)J(x) + Z ri(x) H;(x)

where J(x) is Jacobian of (x), and H;(x) is Hessian of
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Nonlinear Least Squares, continued

@ Linear system for Newton step is

(JT(a:k)J(a:k) + Zrz(wk)Hz(a:k)> s = —J! (xy)r(xy)

1=1

@ m Hessian matrices H; are usually inconvenient and
expensive to compute

@ Moreover, in H, each H; is multiplied by residual

component r;, which is small at solution if fit of model
function to data is good

T
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Gauss-Newton Method

@ This motivates Gauss-Newton method for nonlinear least
squares, in which second-order term is dropped and linear
system

J (x)J ()8, = —J ! (x1,)r (1)
IS solved for approximate Newton step s, at each iteration

@ This is system of normal equations for linear least squares
problem
J(xg)skp = —r(xy)

which can be solved better by QR factorization
@ Next approximate solution is then given by
T+1 = Tk + Sk
and process is repeated until convergence 1
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Example: Gauss-Newton Method

@ Use Gauss-Newton method to fit nonlinear model function

f(t,x) = x1 exp(zat)

to data
t1 00 1.0 20 3.0
y |20 07 03 0.1

@ For this model function, entries of Jacobian matrix of
residual function r are given by

(@b = T = —explaaty
{J(Qj)}z,Q — aga(jj) = —x11; exp(xgti) j[
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Example, continued

o If we take zp = |1 O]T, then Gauss-Newton step sy is
given by linear least squares problem

1 0] 17
1 —1| _ o3
—1 -2 %= |o7
1 -3 0.9

L 0.69
whose solution is sg = _0.61

@ Then next approximate solution is given by x; = x¢ + so,
and process is repeated until convergence

T
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Example, continued

T, IEDIE
1.000 0.000 2.390
1.690 —-0.610 0.212
1.975 —0.930 0.007
1.994 —-1.004 0.002
1.995 —1.009 0.002
1.995 —1.010 0.002

< interactive example >

1
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Gauss-Newton Method, continued

@ Gauss-Newton method replaces nonlinear least squares
problem by sequence of linear least squares problems
whose solutions converge to solution of original nonlinear
problem

@ If residual at solution is large, then second-order term
omitted from Hessian is not negligible, and Gauss-Newton
method may converge slowly or fail to converge

@ In such “large-residual” cases, it may be best to use
general nonlinear minimization method that takes into
account true full Hessian matrix
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Levenberg-Marquardt Method

@ Levenberg-Marquardt method is another useful alternative
when Gauss-Newton approximation is inadequate or yields
rank deficient linear least squares subproblem

@ In this method, linear system at each iteration is of form
(J" (i) (k) + pid) s = =T () r(xp)
where 1. is scalar parameter chosen by some strategy
@ Corresponding linear least squares problem is
[J(wk)] 5, = [—T(wk)]
Vil 0

@ With suitable strategy for choosing ., this method can be
very robust in practice, and it forms basis for several
effective software packages < interactive example > 1
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Equality-Constrained Optimization

@ For equality-constrained minimization problem
min f(x) subjectto g(x)=0

where f: R® — Rand g: R® — R™, with m < n, we seek
critical point of Lagrangian £L(x, \) = f(z) + A g(z)

@ Applying Newton’s method to nonlinear system

Vf(x)+ Jg(m))\] _ 0o

cta )= [T+

we obtain linear system

5 A -

for Newton step (s, d) in (x, A) at each iteration 1
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Sequential Quadratic Programming

@ Foregoing block 2 x 2 linear system is equivalent to
quadratic programming problem, so this approach is
kKnown as sequential quadratic programming

@ Types of solution methods include
e Direct solution methods, in which entire block 2 x 2 system
IS solved directly

@ Range space methods, based on block elimination in block
2 x 2 linear system

e Null space methods, based on orthogonal factorization of
matrix of constraint normals, J/ (z)

< interactive example >
1
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Direct Method:

Solve 2 x 2 Block System via Gaussian Elimination

» . -

B(z,A) J,(z)] [s Vi) +Jg ()
- Jy(x) O | |9 _ g(x)
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Merit Function

@ Once Newton step (s, d) determined, we need merit
function to measure progress toward overall solution for
use in line search or trust region

@ Popular choices include penalty function
dp(x) = f(x) + 5 pg(x) g(z)
and augmented Lagrangian function
Ly(x,A) = f(x) + A'g(x) + 5 pg(x) g(x)

where parameter p > 0 determines relative weighting of
optimality vs feasibility

@ Given starting guess x(, good starting guess for Ay can be
obtained from least squares problem

JgT(w()) )\0 = —Vf(wo) j[
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Inequality-Constrained Optimization

@ Methods just outlined for equality constraints can be
extended to handle inequality constraints by using active
set strategy

@ Inequality constraints are provisionally divided into those
that are satisfied already (and can therefore be temporarily
disregarded) and those that are violated (and are therefore
temporarily treated as equality constraints)

@ This division of constraints is revised as iterations proceed
until eventually correct constraints are identified that are
binding at solution

1
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Penalty Methods

@ Merit function can also be used to convert
equality-constrained problem into sequence of
unconstrained problems

o If a:;; IS solution to
min ¢,(z) = f(z) + 3 pg(x)

then under appropriate conditions

Tg(x)

pli)rglo T,=T

@ This enables use of unconstrained optimization methods,
but problem becomes ill-conditioned for large p, so we
solve sequence of problems with gradually increasing
values of p, with minimum for each problem used as

starting point for next problem < interactive example > 1
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Barrier Methods
@ For inequality-constrained problems, another alternative is

barrier function, such as

or
6u(@) = (@) — Y log(~hi(@))

which increasingly penalize feasible points as they
approach boundary of feasible region
@ Again, solutions of unconstrained problem approach x* as
1 — 0, but problems are increasingly ill-conditioned, so
solve sequence of problems with decreasing values of u
@ Barrier functions are basis for interior point methods for
linear programming
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Example: Constrained Optimization

@ Consider quadratic programming problem
min f(z) = 0.52% + 2.5
subject to
glx) =21 —29—1=0
@ Lagrangian function is given by
L(x, ) = f(x)+ Mg(x) = 0.52% + 2.525 + M(x1 — 29 — 1)

@ Since
Vf(z) = [5"”';12] and J,(z)=[1 —1]
we have
VoL(x,\) = V() + I (2) = [5‘212] + A [_ﬂ i
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Example, continued

@ So system to be solved for critical point of Lagrangian is

rx1+A = 0
55132—)\ =
1 — X9y = 1

which in this case is linear system

1 0 1 I 0
0 5 —1f (x2| = |0
1 -1 O] | A 1

@ Solving this system, we obtain solution
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Example, continued

contours of 0.5x% + 2.523 line 2y — 29 =1

—1.0
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Barrier Functions for Inequality Constraints

Solve modified unconstrained minimization problem,

]_J
du(@) = f() — >

— hi(ax)

Starting in the feasible region!

As 1. = 0 it appears that the constraint is weaker.

However, the constraint goes to oo for any 1 # 0, so a small ;. simply means
the fence is steeper, which makes the minimization problem more challenging.

1 5
fx) = Saf+ a3

h(x) = 1—z1+22 <0
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Linear Programming

@ One of most important and common constrained
optimization problems is /inear programming

@ One standard form for such problems is

T

min f(x) =c x* subjectto Ax=b and x>0

where m <n, A €¢ R™*", bec R™,and ¢, x € R"

@ Feasible region is convex polyhedron in R”, and minimum
must occur at one of its vertices

@ Simplex method moves systematically from vertex to
vertex until minimum point is found

1
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Linear Programming, continued

@ Simplex method is reliable and normally efficient, able to
solve problems with thousands of variables, but can
require time exponential in size of problem in worst case

@ Interior point methods for linear programming developed in
recent years have polynomial worst case solution time

@ These methods move through interior of feasible region,
not restricting themselves to investigating only its vertices

@ Although interior point methods have significant practical
Impact, simplex method is still predominant method in
standard packages for linear programming, and its

effectiveness in practice is excellent T
1
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Example: Linear Programming

@ To illustrate linear programming, consider

min = ¢
£r

Ir — —8:131 — 11%2
subject to linear inequality constraints
Sx1 + 4o <40, —x1+329<12, 21 >0, 29 >0

@ Minimum value must occur at vertex of feasible region, in
this case at x1 = 3.79, x5 = 5.26, where objective function
has value —88.2

T
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Example, continued

\ Sxq + 4o = 40

EANGEN \\1|0 N B
27  —46 -6

6  —88.2 1
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Steepest Descent

d Choose a to minimize f(X,,4)



Q: What are the units of Vf?

Surface Temperature (F) 11Z Mon Mar 09 2015
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d What are the units of x, ?
d What are the units of o, ?  (i.e.,
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Trust Region Methods

@ Alternative to line search is trust region method, in which
approximate solution is constrained to lie within region
where quadratic model is sufficiently accurate

@ If current trust radius is binding, minimizing quadratic
model function subject to this constraint may modify
direction as well as length of Newton step

@ Accuracy of quadratic model is assessed by comparing
actual decrease in objective function with that predicted by
quadratic model, and trust radius is increased or
decreased accordingly

T
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Trust Region Methods, continued

trust radius

" Newton

( step sy
contours of \_ )
quadratic model ™S—___ 7
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