Outline - Optimization Problems - One-Dimensional Optimization - Multi-Dimensional Optimization ### Optimization - Given function $f: \mathbb{R}^n \to \mathbb{R}$, and set $S \subseteq \mathbb{R}^n$, find $\boldsymbol{x}^* \in S$ such that $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in S$ - x^* is called *minimizer* or *minimum* of f - It suffices to consider only minimization, since maximum of f is minimum of -f - Objective function f is usually differentiable, and may be linear or nonlinear - Constraint set S is defined by system of equations and inequalities, which may be linear or nonlinear - Points $x \in S$ are called *feasible* points - If $S = \mathbb{R}^n$, problem is *unconstrained* # Optimization Problems • General continuous optimization problem: $$\min f(x)$$ subject to $g(x) = 0$ and $h(x) \le 0$ where $$f: \mathbb{R}^n \to \mathbb{R}$$, $g: \mathbb{R}^n \to \mathbb{R}^m$, $h: \mathbb{R}^n \to \mathbb{R}^p$ - Linear programming: f, g, and h are all linear - Nonlinear programming: at least one of f, g, and h is nonlinear ### **Examples: Optimization Problems** - Minimize weight of structure subject to constraint on its strength, or maximize its strength subject to constraint on its weight - Minimize cost of diet subject to nutritional constraints - Minimize surface area of cylinder subject to constraint on its volume: $$\min_{x_1, x_2} f(x_1, x_2) = 2\pi x_1(x_1 + x_2)$$ subject to $$g(x_1, x_2) = \pi x_1^2 x_2 - V = 0$$ where x_1 and x_2 are radius and height of cylinder, and V is required volume ## Local vs Global Optimization - $x^* \in S$ is *global minimum* if $f(x^*) \le f(x)$ for all $x \in S$ - $x^* \in S$ is *local minimum* if $f(x^*) \le f(x)$ for all feasible x in some neighborhood of x^* # Global Optimization - Finding, or even verifying, global minimum is difficult, in general - Most optimization methods are designed to find local minimum, which may or may not be global minimum - If global minimum is desired, one can try several widely separated starting points and see if all produce same result - For some problems, such as linear programming, global optimization is more tractable #### **Existence of Minimum** - If f is continuous on *closed* and *bounded* set $S \subseteq \mathbb{R}^n$, then f has global minimum on S - If S is not closed or is unbounded, then f may have no local or global minimum on S - Continuous function f on unbounded set $S \subseteq \mathbb{R}^n$ is *coercive* if $$\lim_{\|\boldsymbol{x}\| \to \infty} f(\boldsymbol{x}) = +\infty$$ i.e., f(x) must be large whenever ||x|| is large • If f is coercive on closed, unbounded set $S \subseteq \mathbb{R}^n$, then f has global minimum on S ### An Example of a Coercive Function ``` x=-1.6:.1:1.5; y=-1.6:.1:1.7; [X,Y]=ndgrid(x,y); Goes to \infty as ||\mathbf{x}|| \rightarrow \infty u = -3*exp(-X.*X-Y.*Y).*sin(3*X-Y) + (1.2*(X-Y).^2+(X+Y).^2; hold off; mesh(X,Y,u) hold on ; contour(X,Y,u,30) Level Sets (contours, isosurfaces) ``` #### Level Sets - Level set for function $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is set of all points in S for which f has some given constant value - For given $\gamma \in \mathbb{R}$, sublevel set is $$L_{\gamma} = \{ \boldsymbol{x} \in S : f(\boldsymbol{x}) \le \gamma \}$$ - If continuous function f on $S \subseteq \mathbb{R}^n$ has nonempty sublevel set that is closed and bounded, then f has global minimum on S - If S is unbounded, then f is coercive on S if, and only if, all of its sublevel sets are bounded (No open contours...) # Uniqueness of Minimum - Set $S \subseteq \mathbb{R}^n$ is *convex* if it contains line segment between any two of its points - Function $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is *convex* on convex set S if its graph along any line segment in S lies *on or below* chord connecting function values at endpoints of segment - Any local minimum of convex function f on convex set $S \subseteq \mathbb{R}^n$ is global minimum of f on S - Any local minimum of *strictly* convex function f on convex set $S \subseteq \mathbb{R}^n$ is *unique* global minimum of f on S #### **Convex Domains and Convex Functions** # First-Order Optimality Condition - For function of one variable, one can find extremum by differentiating function and setting derivative to zero - Generalization to function of n variables is to find critical point, i.e., solution of nonlinear system $$\nabla f(\boldsymbol{x}) = \mathbf{0}$$ where $\nabla f(x)$ is *gradient* vector of f, whose ith component is $\partial f(x)/\partial x_i$ - For continuously differentiable $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$, any interior point x^* of S at which f has local minimum must be critical point of f - But not all critical points are minima: they can also be maxima or saddle points # First-Order Optimality Condition - But not all critical points are minima: they can also be maxima or saddle points - Saddle points in higher dimensions are more common than zeroslope inflection points in 1D Note the open contours.... # First-Order Optimality Condition - For function of one variable, one can find extremum by differentiating function and setting derivative to zero - Generalization to function of n variables is to find critical point, i.e., solution of nonlinear system $$\nabla f(x) = 0$$ We use the solution techniques of Chapter 5 to solve this nonlinear system. ### Second-Order Optimality Condition • For twice continuously differentiable $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$, we can distinguish among critical points by considering Hessian matrix $\mathbf{H}_f(x)$ defined by $$\{\boldsymbol{H}_f(x)\}_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$ which is symmetric - At critical point $m{x}^*$, if $m{H}_f(m{x}^*)$ is - positive definite, then x^* is minimum of f - negative definite, then x^* is maximum of f - indefinite, then x^* is saddle point of f - singular, then various pathological situations are possible #### Classifying Critical Points • Example 6.5 from the text: $$f(\mathbf{x}) = 2x_1^3 + 3x_1^2 + 12x_1x_2 + 3x_2^2 - 6x_2 + 6.$$ • Gradient: $$\nabla f(\mathbf{x}) = \begin{bmatrix} 6x_1^2 + 6x_1 + 12x_2 \\ 12x_1 + 6x_2 - 6 \end{bmatrix}.$$ • Hessian is symmetric: $$H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_2} \end{bmatrix} = \begin{bmatrix} 12x_1 + 6 & 12 \\ 12 & 6 \end{bmatrix}.$$ • Critical points, solutions to $\nabla f(\mathbf{x}) = 0$ are $$\mathbf{x}^* = [1, -1]^T$$, and $\mathbf{x}^* = [2, -3]^T$. • At first critical point, $x^* = [1, -1]^T$, $$H_f(1,-1) = \begin{bmatrix} 18 & 12 \\ 12 & 6 \end{bmatrix},$$ does not have positive eigenvalues, so $[1, -1]^T$ is a saddle point. • At second critical point, $x^* = [2, -3]^T$, $$H_f(2,-3) = \begin{bmatrix} 30 & 12 \\ 12 & 6 \end{bmatrix},$$ does have positive eigenvalues, so $[2, -3]^T$ is a local minimum. $$f(\mathbf{x}) = 2x_1^3 + 3x_1^2 + 12x_1x_2 + 3x_2^2 - 6x_2 + 6.$$ $$f(\mathbf{x}) = 2x_1^3 + 3x_1^2 + 12x_1x_2 + 3x_2^2 - 6x_2 + 6.$$ ullet First critical point, $x^* = [1, -1]^T$, is a saddle point. Hessian not SPD. $$f(\mathbf{x}) = 2x_1^3 + 3x_1^2 + 12x_1x_2 + 3x_2^2 - 6x_2 + 6.$$ ullet First critical point, $x^* = [1, -1]^T$, is a saddle point. Hessian not SPD. $$f(\mathbf{x}) = 2x_1^3 + 3x_1^2 + 12x_1x_2 + 3x_2^2 - 6x_2 + 6.$$ • Second critical point, $x^* = [2, -3]^T$, is a local minimum. Hessian is SPD. ### Second-Order Optimality Condition • For twice continuously differentiable $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$, we can distinguish among critical points by considering Hessian matrix $\mathbf{H}_f(x)$ defined by $$\{\boldsymbol{H}_f(x)\}_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$ which is symmetric - At critical point $m{x}^*$, if $m{H}_f(m{x}^*)$ is - positive definite, then x^* is minimum of f - negative definite, then x^* is maximum of f - indefinite, then x^* is saddle point of f - singular, then various pathological situations are possible #### Example of Singular Hessian in 1D • Consider, $$f(x) = (x-1)^4$$ $$\nabla f = \frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial x} = 4(x-1)^3 = 0 \text{ when } x = x^* = 1.$$ $$H_{ij} = \frac{\partial^2 f}{\partial x_i x_j} = \frac{\partial^2 f}{\partial x^2} = 12(x-1)^2 = 0.$$ Here, the Hessian is singular at $x = x^*$ and x^* is a minimizer of f. • However, if $$f(x) = (x-1)^3$$ $$\nabla f = \frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial x} = 3(x-1)^2 = 0 \text{ when } x = x^* = 1.$$ $$H_{ij} = \frac{\partial^2 f}{\partial x_i x_j} = \frac{\partial^2 f}{\partial x^2} = 6(x-1) = 0.$$ Here, the Hessian is singular at $x = x^*$ and x^* is a *not* a minimizer of f. # **Constrained Optimality** - If problem is constrained, only feasible directions are relevant - For equality-constrained problem $$\min f(x)$$ subject to $g(x) = 0$ where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$, with $m \leq n$, necessary condition for feasible point x^* to be solution is that negative gradient of f lie in space spanned by constraint normals, $$-\nabla f(\boldsymbol{x}^*) = \boldsymbol{J}_g^T(\boldsymbol{x}^*)\boldsymbol{\lambda}$$ where J_g is Jacobian matrix of g, and λ is vector of Lagrange multipliers This condition says we cannot reduce objective function without violating constraints ## Constrained Optimality, continued • Lagrangian function $\mathcal{L} \colon \mathbb{R}^{n+m} \to \mathbb{R}$, is defined by $$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x})$$ Its gradient is given by $$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix} abla f(oldsymbol{x}) + oldsymbol{J}_g^T(oldsymbol{x}) oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}) \end{bmatrix}$$ Its Hessian
is given by $$m{H}_{\mathcal{L}}(m{x},m{\lambda}) = egin{bmatrix} m{B}(m{x},m{\lambda}) & m{J}_g^T(m{x}) \ m{J}_g(m{x}) & m{O} \end{bmatrix}$$ where $$oldsymbol{B}(oldsymbol{x},oldsymbol{\lambda}) = oldsymbol{H}_f(oldsymbol{x}) + \sum_{i=1}^m \lambda_i oldsymbol{H}_{g_i}(oldsymbol{x})$$ ### Constrained Optimality, continued Together, necessary condition and feasibility imply critical point of Lagrangian function, $$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix} abla f(oldsymbol{x}) + oldsymbol{J}_g^T(oldsymbol{x}) oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}) \end{bmatrix} = oldsymbol{0}$$ #### Equality Constraints: Case $g(\mathbf{x})$ =scalar. $$\min f(\mathbf{x})$$ subject to $g(\mathbf{x}) = 0$. • Lagrangian $$\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda g(\mathbf{x})$$ $\lambda := Lagrange multiplier$ $$\nabla \mathcal{L} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial x_i} \\ \frac{\partial \mathcal{L}}{\partial \lambda} \end{pmatrix} = \begin{pmatrix} \nabla f + \lambda \nabla g \\ g \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ 0 \end{pmatrix}$$ at critical point $(\mathbf{x}^*, \lambda^*)$. - Note, $\nabla f(\mathbf{x}^*) \neq 0$. - Instead, $\nabla f(\mathbf{x}^*) = -\lambda^* \nabla g(\mathbf{x}^*).$ - The gradient of f at x^* is a multiple of the gradient of g. #### Constrained Optimality Example, g(x) a Scalar. - ☐ Comment on: "This condition says we cannot reduce objective function without violating constraints." - \square A key point is that, x^* , ∇f is parallel to ∇g - ☐ If there are multiple constraints, then ∇f in $span\{\nabla g_k\} = J_g^T \lambda$ #### Constrained Optimality Example, g(x) a Scalar. - \Box Here, we see the gradients of f and g at a point that is not x^* . - □ Clearly, we can make more progess in reducing f(x) by moving along the g(x)=0 contour until ∇f is parallel to ∇g . #### Example: Two Equality Constraints $\min f(\mathbf{x})$ subject to $g_1(\mathbf{x}) = 0$ and $g_2(\mathbf{x}) = 0$. • Lagrangian $$\mathcal{L}(\mathbf{x}, \lambda) := f(\mathbf{x}) + \lambda_1 g_1(\mathbf{x}) + \lambda_2 g_2(\mathbf{x}).$$ • First-order conditions $$\nabla \mathcal{L} = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial x_i} \\ \frac{\partial \mathcal{L}}{\partial \lambda_k} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x_i} + \sum_k \lambda_k \frac{\partial g_k}{\partial x_i} \\ 0 + \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} \end{pmatrix}$$ $$= \begin{pmatrix} \nabla f + \mathcal{J}_g^T \lambda \\ \mathbf{g} \end{pmatrix}$$ ## Constrained Optimality, continued Together, necessary condition and feasibility imply critical point of Lagrangian function, $$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix} abla f(oldsymbol{x}) + oldsymbol{J}_g^T(oldsymbol{x}) oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}) \end{bmatrix} = oldsymbol{0}$$ - Hessian of Lagrangian is symmetric, but not positive definite, so critical point of \(\mathcal{L} \) is saddle point rather than minimum or maximum - Critical point (x^*, λ^*) of \mathcal{L} is constrained minimum of f if $B(x^*, \lambda^*)$ is positive definite on *null space* of $J_g(x^*)$ - If columns of Z form basis for null space, then test projected Hessian Z^TBZ for positive definiteness ## Constrained Optimality, continued Together, necessary condition and feasibility imply critical point of Lagrangian function, $$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix} abla f(oldsymbol{x}) + oldsymbol{J}_g^T(oldsymbol{x}) oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}) \end{bmatrix} = oldsymbol{0}$$ - Hessian of Lagrangian is symmetric, but not positive definite, so critical point of £ is saddle point rather than minimum or maximum - Critical point (x^*, λ^*) of \mathcal{L} is constrained minimum of f if $B(x^*, \lambda^*)$ is positive definite on *null space* of $J_g(x^*)$ - Note: null space of $J_g(x^*)$ is the set of vectors tangent to the constraint surface (or surfaces, if more than one g present). #### Constrained Optimality Example, g(x) a Scalar. - ☐ Comment on: "This condition says we cannot reduce objective function without violating constraints." - \square A key point is that, x^* , ∇f is parallel to ∇g - ☐ If there are multiple constraints, then ∇f in $span\{\nabla g_k\} = J_g^T \lambda$ ### Constrained Optimality, continued If inequalities are present, then KKT optimality conditions also require nonnegativity of Lagrange multipliers corresponding to inequalities, and complementarity condition Karush-Kuhn-Tucker $$\nabla_x \mathcal{L}(\underline{x}^*, \underline{\lambda}^*) = \underline{0},$$ $$g(\underline{x}^*) = \underline{0},$$ $$\underline{h}(\underline{x}^*) \le \underline{0},$$ $\lambda_i^* \geq 0, \ i = m+1, \ldots, m+p$ inequality Lagrange multipliers $$\lambda_i^* h_i(\underline{x}^*) = 0, \ i = m+1, \ldots, m+p$$ complementarity condition. #### Inequality Constraint and Sign of λ - \Box A key point is that, at \mathbf{x}^* , ∇f is parallel to ∇h - ☐ If there are multiple constraints, then ∇f in $span\{\nabla h_k\} = J_h^T \lambda$ #### Inequality Constraint and Sign of λ - If constraint is active $(h(x^*) = 0)$ then ∇f and ∇h point in opposite directions. - $\bullet \nabla f + \lambda^* \nabla h = 0.$ - $\bullet \lambda^* > 0.$ # Sensitivity and Conditioning - Function minimization and equation solving are closely related problems, but their sensitivities differ - In one dimension, absolute condition number of root x^* of equation f(x)=0 is $1/|f'(x^*)|$, so if $|f(\hat{x})| \leq \epsilon$, then $|\hat{x}-x^*|$ may be as large as $\epsilon/|f'(x^*)|$ - For minimizing f, Taylor series expansion $$f(\hat{x}) = f(x^* + h)$$ = $f(x^*) + f'(x^*)h + \frac{1}{2}f''(x^*)h^2 + \mathcal{O}(h^3)$ shows that, since $f'(x^*) = 0$, if $|f(\hat{x}) - f(x^*)| \le \epsilon$, then $|\hat{x} - x^*|$ may be as large as $\sqrt{2\epsilon/|f''(x^*)|}$ Thus, based on function values alone, minima can be computed to only about half precision - \square As you zoom in, $f(x) \rightarrow 0$ quadratically, but $x \rightarrow x^*$ only linearly. - \Box So, if $|f(x)-f(x^*)| \approx \epsilon$, then $||\underline{x}-\underline{x}^*|| = O(\epsilon^{1/2})$ - \Box As you zoom in, $f(x) \rightarrow 0$ quadratically, but $x \rightarrow x^*$ only linearly - \Box So, if $|f(x)-f(x^*)| \approx \epsilon$, then $||\underline{x}-\underline{x}^*|| = O(\epsilon^{1/2})$ ### Sensitivity of Minimization Terminate search when $$|f(x^* + \Delta x) - f(x^*)| \le \epsilon.$$ Taylor series: $$f(x^* + \Delta x) = f(x^*) + \Delta x f'(x^*) + \frac{\Delta x^2}{2} f''(x^*) + O(\Delta x^3)$$ $$\frac{\Delta x^2}{2} \approx \frac{f(x^* + \Delta x) - f(x^*)}{f''(x^*)}$$ $$|\Delta x| \approx \sqrt{\frac{2\epsilon}{|f''(x^*)|}}$$ - So, if $\epsilon \approx \epsilon_M$, can expect accuracy to approximately $\sqrt{\epsilon_M}$. - Question: Is a small f'' good? Or bad? ### Example: Minimize Cost over Some Design Parameter, x Example: Minimize Cost over Some Design Parameter, x Design Parameter - ☐ While having f"(x*) makes it difficult to find the *optimal* x*, it in fact is a happy circumstance because it gives you liberty to add additional constraints at no cost. - ☐ So, often, having a broad minimum is *good*. #### Methods for One-Dimensional Problems - Demonstrate - Basic techniques - □ Bracketing - □ Convergence rates - ☐ Useful for *line search* in multi-dimensional problems # Unimodality - For minimizing function of one variable, we need "bracket" for solution analogous to sign change for nonlinear equation - Real-valued function f is $\underbrace{unimodal}$ on interval [a,b] if there is unique $x^* \in [a,b]$ such that $f(x^*)$ is minimum of f on [a,b], and f is strictly decreasing for $x \leq x^*$, strictly increasing for $x^* \leq x$ - Unimodality enables discarding portions of interval based on sample function values, analogous to interval bisection - Suppose f is unimodal on [a,b], and let x_1 and x_2 be two points within [a,b], with $x_1 < x_2$ - Evaluating and comparing $f(x_1)$ and $f(x_2)$, we can discard either $(x_2,b]$ or $[a,x_1)$, with minimum known to lie in remaining subinterval - To repeat process, we need compute only one new function evaluation - To reduce length of interval by fixed fraction at each iteration, each new pair of points must have same relationship with respect to new interval that previous pair had with respect to previous interval ## Golden Section Search, continued - To accomplish this, we choose relative positions of two points as τ and $1-\tau$, where $\tau^2=1-\tau$, so $\tau=(\sqrt{5}-1)/2\approx 0.618$ and $1-\tau\approx 0.382$ - Whichever subinterval is retained, its length will be τ relative to previous interval, and interior point retained will be at position either τ or $1-\tau$ relative to new interval - To continue iteration, we need to compute only one new function value, at complementary point - This choice of sample points is called golden section search - Golden section search is safe but convergence rate is only linear, with constant $C \approx 0.618$ Requires Unimodality! - \Box f(x) unimodal on [a,b]. - ☐ Subdivide [a,b] into 3 parts. - \Box If $f_1 > f_2$ discard (a, x_1) - \Box Choose new point in larger of remaining two intervals: (x_1,x_2) or (x_2,b) . - \rightarrow x_1 and x_2 should be closer to center and not at 1/3, 2/3. ### Golden Section Geometry \Box Want new section [1- τ , τ] to have same relation as [0,1- τ] to [0,1]. $$\frac{\tau - (1 - \tau)}{\tau} = \frac{1 - \tau}{1}$$ $$2\tau - 1 = \tau - \tau^{2}$$ $$\tau^{2} + \tau - 1 = 0$$ $$\tau = \frac{-1 + \sqrt{1 + 4}}{2} = \frac{\sqrt{5} - 1}{2} = 0.618$$ ### Golden Section Search, continued $$\tau = (\sqrt{5} - 1)/2$$ $$x_1 = a + (1 - \tau)(b
- a); f_1 = f(x_1)$$ $$x_2 = a + \tau(b - a); f_2 = f(x_2)$$ while $((b - a) > tol)$ do if $(f_1 > f_2)$ then $$a = x_1$$ $$x_1 = x_2$$ $$f_1 = f_2$$ $$x_2 = a + \tau(b - a)$$ $$f_2 = f(x_2)$$ else $$b = x_2$$ $$x_2 = x_1$$ $$f_2 = f_1$$ $$x_1 = a + (1 - \tau)(b - a)$$ $$f_1 = f(x_1)$$ end end # Example: Golden Section Search #### Use golden section search to minimize $$f(x) = 0.5 - x \exp(-x^2)$$ # Example, continued | x_1 | f_1 | x_2 | f_2 | |-------|-------|-------|-------| | 0.764 | 0.074 | 1.236 | 0.232 | | 0.472 | 0.122 | 0.764 | 0.074 | | 0.764 | 0.074 | 0.944 | 0.113 | | 0.652 | 0.074 | 0.764 | 0.074 | | 0.584 | 0.085 | 0.652 | 0.074 | | 0.652 | 0.074 | 0.695 | 0.071 | | 0.695 | 0.071 | 0.721 | 0.071 | | 0.679 | 0.072 | 0.695 | 0.071 | | 0.695 | 0.071 | 0.705 | 0.071 | | 0.705 | 0.071 | 0.711 | 0.071 | ## Successive Parabolic Interpolation - Fit quadratic polynomial to three function values - Take minimum of quadratic to be new approximation to minimum of function - New point replaces oldest of three previous points and process is repeated until convergence - Convergence rate of successive parabolic interpolation is superlinear, with $r\approx 1.324$ # Example: Successive Parabolic Interpolation Use successive parabolic interpolation to minimize $$f(x) = 0.5 - x \exp(-x^2)$$ # Example, continued Successive Parabolic Interpolation is Newton's Method applied to a quadratic model of the data. r=1.324 We turn to Newton's method next, r=2. ### Matlab: Successive Parabolic Interpolation – Replace Oldest ``` function x=parab(a,b,c); fa=f(a); fb=f(b); fc=f(c); x=1; fx=f(x); for k=1:15; num = ((fb-fc)*(b-a)^2-(fb-fa)*(b-c)^2); % m' den = 2*((fb-fc)*(b-a)-(fb-fa)*(b-c)); % m" x=b-num/den; fx = f(x); c=b; fc=fb; b=a; fb=fa; a=x; fa=fx; % Push c off end; ``` ### Matlab: Successive Parabolic Interpolation – *Replace Oldest* ``` function x=parab(a,b,c); xx=a:.001:c; yy=f(xx); hold off; plot(xx,yy,'r-'); hold on; format compact; format longe; fa=f(a); fb=f(b); fc=f(c); x=1; fx=f(x); for k=1:15; xo=x; fo=fx; num = ((fb-fc)*(b-a)^2-(fb-fa)*(b-c)^2); % m' den = 2*((fb-fc)*(b-a)-(fb-fa)*(b-c)); % m" x=b-num/den; fx = f(x); c=b; fc=fb; b=a; fb=fa; a=x; fa=fx; % Push c off dx=xo-x; df=fo-fx; [x fx dx df] % Plot kk(k)=k; dk(k)=abs(dx); fk(k)=abs(df); plot(x,fx,'kx'); hold on if abs(df) < 20*eps; break; end; end; pause hold off; semilogy(kk,dk,'r.-',kk,fk,'b.-') function fx=f(x); exx = exp(-x.*x); fx = .5 - x.*exx; fx = 1./sin(x); fx = exp(x) + 1./x; ``` ### Newton's Method Another local quadratic approximation is truncated Taylor series $$f(x+h) \approx f(x) + f'(x)h + \frac{f''(x)}{2}h^2$$ - By differentiation, minimum of this quadratic function of h is given by h = -f'(x)/f''(x) - Suggests iteration scheme $$x_{k+1} = x_k - f'(x_k)/f''(x_k)$$ which is *Newton's method* for solving nonlinear equation f'(x) = 0 Newton's method for finding minimum normally has quadratic convergence rate, but must be started close enough to solution to converge < interactive example > ## Example: Newton's Method - Use Newton's method to minimize $f(x) = 0.5 x \exp(-x^2)$ - First and second derivatives of f are given by $$f'(x) = (2x^2 - 1)\exp(-x^2)$$ and $$f''(x) = 2x(3 - 2x^2)\exp(-x^2)$$ • Newton iteration for zero of f' is given by $$x_{k+1} = x_k - (2x_k^2 - 1)/(2x_k(3 - 2x_k^2))$$ • Using starting guess $x_0 = 1$, we obtain | x_k | $f(x_k)$ | |-------|----------| | 1.000 | 0.132 | | 0.500 | 0.111 | | 0.700 | 0.071 | | 0.707 | 0.071 | #### Matlab Example: newton.m ``` format compact; format longe; x=1; f=0; for k=1:10; fo = f; exx = exp(-x.*x); f = .5 - x.*exx; fp = (2.*x.*x-1).*exx; % fpp = 2.*x.*(3-2.*x.*x).*exx; s = -(2.*x.*x-1)/(2.*x.*(3-2.*x.*x)); x = x+s; y = f-fo; [k x f s y] % print convergence end; ``` # Safeguarded Methods - As with nonlinear equations in one dimension, slow-but-sure and fast-but-risky optimization methods can be combined to provide both safety and efficiency - Most library routines for one-dimensional optimization are based on this hybrid approach - Popular combination is golden section search and successive parabolic interpolation, for which no derivatives are required #### Matlab: Successive Parabolic Interpolation: Naive Bracketing ``` function x=parab(a,b,c); xx=a:.001:c; yy=f(xx); hold off; plot(xx,yy,'r-'); format compact; format longe; fa=f(a); fb=f(b); fc=f(c); x=1; fx=f(x); for k=1:90; num = ((fb-fc)*(b-a)^2-(fb-fa)*(b-c)^2); den = ((fb-fc)*(b-a)-(fb-fa)*(b-c)); xo=x; fo=fx; x=b-.5*num/den; fx = f(x); if x>b; if fx>fb; c=x; fc=fx; else; a=b;fa=fb;b=x;fb=fx; end; else if fx>fb; a=x; fa=fx; else; c=b;fc=fb;b=x;fb=fx; end; end; dx=xo-x; df=fo-fx; [x fx dx df] kk(k)=k; dk(k)=abs(dx); fk(k)=abs(df); plot(x,fx,'kx'); hold on if abs(df)<20*eps; break; end; end; pause hold off; semilogy(kk,dk,'r.-',kk,fk,'b.-') function fx=f(x); exx = exp(-x.*x); fx = .5 - x.*exx; fx = 1./sin(x); fx = exp(x) + 1./x; ``` ### **Convergence Behavior** - ☐ Question 1: What type of convergence is this? - Question 2: What does this plot say about conditioning of $$\min_{x} f(x)$$ ### Methods for Multi-Dimensional Problems ## Steepest Descent Method - Let $f: \mathbb{R}^n \to \mathbb{R}$ be real-valued function of n real variables - At any point x where gradient vector is nonzero, negative gradient, $-\nabla f(x)$, points downhill toward lower values of f - In fact, $-\nabla f(x)$ is locally direction of steepest descent: f decreases more rapidly along direction of negative gradient than along any other - Steepest descent method: starting from initial guess x_0 , successive approximate solutions given by $$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$ where α_k is *line search* parameter that determines how far to go in given direction ## Steepest Descent, continued • Given descent direction, such as negative gradient, determining appropriate value for α_k at each iteration is one-dimensional minimization problem $$\min_{\alpha_k} f(\boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k))$$ that can be solved by methods already discussed - Steepest descent method is very reliable: it can always make progress provided gradient is nonzero - But method is myopic in its view of function's behavior, and resulting iterates can zigzag back and forth, making very slow progress toward solution - In general, convergence rate of steepest descent is only linear, with constant factor that can be arbitrarily close to 1 # Example, continued # Example: Steepest Descent Use steepest descent method to minimize $$f(\mathbf{x}) = 0.5x_1^2 + 2.5x_2^2$$ - Gradient is given by $\nabla f(\boldsymbol{x}) = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix}$ - ullet Taking $m{x}_0 = egin{bmatrix} 5 \\ 1 \end{bmatrix}$, we have $abla f(m{x}_0) = egin{bmatrix} 5 \\ 5 \end{bmatrix}$ - Performing line search along negative gradient direction, $$\min_{\alpha_0} f(\boldsymbol{x}_0 - \alpha_0 \nabla f(\boldsymbol{x}_0))$$ exact minimum along line is given by $\alpha_0=1/3$, so next approximation is $\boldsymbol{x}_1=\begin{bmatrix} 3.333\\ -0.667 \end{bmatrix}$ # Example, continued | \boldsymbol{x}_k | | $f(oldsymbol{x}_k)$ | $ abla f(oldsymbol{x}_k)$ | | |--------------------|--------|---------------------|---------------------------|--------| | 5.000 | 1.000 | 15.000 | 5.000 | 5.000 | | 3.333 | -0.667 | 6.667 | 3.333 | -3.333 | | 2.222 | 0.444 | 2.963 | 2.222 | 2.222 | | 1.481 | -0.296 | 1.317 | 1.481 | -1.481 | | 0.988 | 0.198 | 0.585 | 0.988 | 0.988 | | 0.658 | -0.132 | 0.260 | 0.658 | -0.658 | | 0.439 | 0.088 | 0.116 | 0.439 | 0.439 | | 0.293 | -0.059 | 0.051 | 0.293 | -0.293 | | 0.195 | 0.039 | 0.023 | 0.195 | 0.195 | | 0.130 | -0.026 | 0.010 | 0.130 | -0.130 | # Example, continued < interactive example > #### Newton's Method - Broader view can be obtained by local quadratic approximation, which is equivalent to Newton's method - In multidimensional optimization, we seek zero of gradient, so Newton iteration has form $$oldsymbol{x}_{k+1} = oldsymbol{x}_k - oldsymbol{H}_f^{-1}(oldsymbol{x}_k) abla f(oldsymbol{x}_k)$$ where $H_f(x)$ is *Hessian* matrix of second partial derivatives of f, $$\{\boldsymbol{H}_f(\boldsymbol{x})\}_{ij} = \frac{\partial^2 f(\boldsymbol{x})}{\partial x_i \partial x_j}$$ ### Newton's Method, continued Do not explicitly invert Hessian matrix, but instead solve linear system $$oldsymbol{H}_f(oldsymbol{x}_k)oldsymbol{s}_k = - abla f(oldsymbol{x}_k)$$ for Newton step s_k , then take as next iterate $$x_{k+1} = x_k + s_k$$ - Convergence rate of Newton's method for minimization is normally quadratic - As usual, Newton's method is unreliable unless started close enough to solution to converge # Example: Newton's Method Use Newton's method to minimize $$f(\mathbf{x}) = 0.5x_1^2 + 2.5x_2^2$$ Gradient and Hessian are given by $$abla f(m{x}) = egin{bmatrix} x_1 \\ 5x_2 \end{bmatrix} \quad \text{and} \quad m{H}_f(m{x}) = egin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$ - ullet Taking $m{x}_0 = egin{bmatrix} 5 \\ 1 \end{bmatrix}$, we have $abla f(m{x}_0) = egin{bmatrix} 5 \\ 5 \end{bmatrix}$ - Linear system for Newton step is $\begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$ $s_0 = \begin{bmatrix} -5 \\ -5 \end{bmatrix}$, so $$m{x}_1=m{x}_0+m{s}_0=egin{bmatrix} 5 \ 1 \end{bmatrix}+egin{bmatrix} -5 \ -1 \end{bmatrix}=egin{bmatrix} 0 \ 0 \end{bmatrix},$$ which is exact solution for this problem, as expected for quadratic function ### Newton's Method, continued - In principle, line search parameter is unnecessary with Newton's method, since quadratic model determines length, as well as direction, of step to next approximate solution - When started far from solution, however, it may still be advisable to perform line search along direction of Newton step s_k to make method more robust (*damped* Newton) - Once iterates are near solution, then $\alpha_k=1$ should suffice for subsequent iterations ### Newton's Method, continued - If objective function f has continuous second partial derivatives, then
Hessian matrix H_f is symmetric, and near minimum it is positive definite - Thus, linear system for step to next iterate can be solved in only about half of work required for LU factorization - Far from minimum, $H_f(x_k)$ may not be positive definite, so Newton step s_k may not be *descent direction* for function, i.e., we may not have $$\nabla f(\boldsymbol{x}_k)^T \boldsymbol{s}_k < 0$$ In this case, alternative descent direction can be computed, such as negative gradient or direction of negative curvature, and then perform line search ## cg4.m demo #### **Quasi-Newton Methods** - Newton's method costs $\mathcal{O}(n^3)$ arithmetic and $\mathcal{O}(n^2)$ scalar function evaluations per iteration for dense problem - Many variants of Newton's method improve reliability and reduce overhead - Quasi-Newton methods have form $$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \boldsymbol{B}_k^{-1} \nabla f(\boldsymbol{x}_k)$$ where α_k is line search parameter and \boldsymbol{B}_k is approximation to Hessian matrix Many quasi-Newton methods are more robust than Newton's method, are superlinearly convergent, and have lower overhead per iteration, which often more than offsets their slower convergence rate ## Secant Updating Methods - Could use Broyden's method to seek zero of gradient, but this would not preserve symmetry of Hessian matrix - Several secant updating formulas have been developed for minimization that not only preserve symmetry in approximate Hessian matrix, but also preserve positive definiteness - Symmetry reduces amount of work required by about half, while positive definiteness guarantees that quasi-Newton step will be descent direction #### **BFGS Method** One of most effective secant updating methods for minimization is *BFGS* $$\begin{aligned} & \boldsymbol{x}_0 = \text{initial guess} \\ & \boldsymbol{B}_0 = \text{initial Hessian approximation} \\ & \textbf{for } k = 0, 1, 2, \dots \\ & \textbf{Solve } \boldsymbol{B}_k \, \boldsymbol{s}_k = -\nabla f(\boldsymbol{x}_k) \text{ for } \boldsymbol{s}_k \\ & \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k \\ & \boldsymbol{y}_k = \nabla f(\boldsymbol{x}_{k+1}) - \nabla f(\boldsymbol{x}_k) \\ & \boldsymbol{B}_{k+1} = \boldsymbol{B}_k + (\boldsymbol{y}_k \boldsymbol{y}_k^T)/(\boldsymbol{y}_k^T \boldsymbol{s}_k) - (\boldsymbol{B}_k \boldsymbol{s}_k \boldsymbol{s}_k^T \boldsymbol{B}_k)/(\boldsymbol{s}_k^T \boldsymbol{B}_k \boldsymbol{s}_k) \end{aligned}$$ end ### BFGS Method, continued - In practice, factorization of B_k is updated rather than B_k itself, so linear system for s_k can be solved at cost of $\mathcal{O}(n^2)$ rather than $\mathcal{O}(n^3)$ work - Unlike Newton's method for minimization, no second derivatives are required - Can start with $B_0 = I$, so initial step is along negative gradient, and then second derivative information is gradually built up in approximate Hessian matrix over successive iterations - BFGS normally has superlinear convergence rate, even though approximate Hessian does not necessarily converge to true Hessian - Line search can be used to enhance effectiveness # Example: BFGS Method - Use BFGS to minimize $f(\boldsymbol{x}) = 0.5x_1^2 + 2.5x_2^2$ - Gradient is given by $\nabla f(\boldsymbol{x}) = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix}$ - Taking $x_0 = \begin{bmatrix} 5 & 1 \end{bmatrix}^T$ and $B_0 = I$, initial step is negative gradient, so $$oldsymbol{x}_1 = oldsymbol{x}_0 + oldsymbol{s}_0 = egin{bmatrix} 5 \ 1 \end{bmatrix} + egin{bmatrix} -5 \ -5 \end{bmatrix} = egin{bmatrix} 0 \ -4 \end{bmatrix}$$ Updating approximate Hessian using BFGS formula, we obtain $$\boldsymbol{B}_1 = \begin{bmatrix} 0.667 & 0.333 \\ 0.333 & 0.667 \end{bmatrix}$$ Then new step is computed and process is repeated ### Example: BFGS Method | $oldsymbol{x}_k$ | | $f(oldsymbol{x}_k)$ | $ abla f(oldsymbol{x}_k)$ | | |------------------|--------|---------------------|---------------------------|---------| | 5.000 | 1.000 | 15.000 | 5.000 | 5.000 | | 0.000 | -4.000 | 40.000 | 0.000 | -20.000 | | -2.222 | 0.444 | 2.963 | -2.222 | 2.222 | | 0.816 | 0.082 | 0.350 | 0.816 | 0.408 | | -0.009 | -0.015 | 0.001 | -0.009 | -0.077 | | -0.001 | 0.001 | 0.000 | -0.001 | 0.005 | - Increase in function value can be avoided by using line search, which generally enhances convergence - For quadratic objective function, BFGS with exact line search finds exact solution in at most n iterations, where n is dimension of problem < interactive example > ### Conjugate Gradient Method - Another method that does not require explicit second derivatives, and does not even store approximation to Hessian matrix, is conjugate gradient (CG) method - CG generates sequence of conjugate search directions, implicitly accumulating information about Hessian matrix - ullet For quadratic objective function, CG is theoretically exact after at most n iterations, where n is dimension of problem - CG is effective for general unconstrained minimization as well ### Conjugate Gradient Method, continued $$\begin{aligned} & \boldsymbol{x}_0 = \text{initial guess} \\ & \boldsymbol{g}_0 = \nabla f(\boldsymbol{x}_0) \\ & \boldsymbol{s}_0 = -\boldsymbol{g}_0 \\ & \text{for } k = 0, 1, 2, \dots \\ & \text{Choose } \alpha_k \text{ to minimize } f(\boldsymbol{x}_k + \alpha_k \boldsymbol{s}_k) \\ & \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{s}_k \\ & \boldsymbol{g}_{k+1} = \nabla f(\boldsymbol{x}_{k+1}) \\ & \beta_{k+1} = (\boldsymbol{g}_{k+1}^T \boldsymbol{g}_{k+1})/(\boldsymbol{g}_k^T \boldsymbol{g}_k) \\ & \boldsymbol{s}_{k+1} = -\boldsymbol{g}_{k+1} + \beta_{k+1} \boldsymbol{s}_k \end{aligned}$$ end • Alternative formula for β_{k+1} is $$\beta_{k+1} = ((\boldsymbol{g}_{k+1} - \boldsymbol{g}_k)^T \boldsymbol{g}_{k+1}) / (\boldsymbol{g}_k^T \boldsymbol{g}_k)$$ $$f(\underline{x}) = \frac{1}{2} \underbrace{x^{T} H \underline{x} - x^{T} \underline{b}}_{+} + C$$ $$\nabla f = \underbrace{H \underline{x} - \underline{b}}_{+}$$ $$Find \underline{x}^{4} = \underbrace{st}_{+} \nabla f = 0 = 7 \underbrace{H \underline{x}^{4} = \underline{b}}_{+} + \underbrace{h - spo}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} \underbrace{k - 1}_{+} \underbrace{k - 1}_{+}$$ $$= \underbrace{X}_{+} \underbrace{k - 1}_{+} + \underbrace{k - 1}_{+} 1}_{+}$$ We don't know $$x^{\#}$$, we only know! $$||x^{\#}| = b$$ Recoll- Linear least squarses: $$||x^{\#}||^{2} \rightarrow s_{i}^{T}(S_{X}-x^{\#}) = 0$$ $$||x^{\#}||^{2} \rightarrow (s_{i},x^{\#}) = (s_{i},x^{\#}),$$ Use need a computable r.h.s.: $(s_{i},x^{\#})$, Use the $||x^{\#}||^{2} \rightarrow (s_{i},x^{\#})_{H} = (s_{i},x^{\#})_{H}$ $$||x^{\#}||^{2} \rightarrow (s_{i},x^{\#})_{H} = (s_{i},x^{\#})_{H}$$ $$(\underbrace{Si}, \underbrace{X^*})_{H} = \underbrace{Si}_{I} H_{X} + \underbrace{Si}_{J} \underbrace{S}_{I}$$ $$(\underbrace{Si}, \underbrace{Sa})_{H} = \underbrace{Si}_{I} H_{X} + \underbrace{Si}_{J} \underbrace{X}_{J} \underbrace{Si}_{J}$$ $$= \underbrace{Si}_{I} H_{X} + \underbrace{Incar}_{J} \underbrace{Suarcs}_{J} \text{ if helps if}$$ $$(\underbrace{Si}, \underbrace{Si}_{J})_{H} = \underbrace{Sij}_{J} - \underbrace{Orthonormal basis}_{J}$$ $$- in H-inner product,$$ $$Then we have:$$ $$(\underbrace{Si}, \underbrace{Sa})_{H} = \underbrace{\alpha_{i}}_{I} = \underbrace{Si}_{J} \underbrace{Si}_{$$ Thus, as we augment the search space, if $$5k-1$$ LH $\{50,5,-5k-2\}$ We have $2k = X_{k-1} + X_{k-1} + X_{k-1} = argmin f(x_{k-1} + X_{k-1})$ is the best-fit in $(505,-5k-1)$ in H -norm o If H is $n \times n$, then $X_n := X^d$ To enforce $$S_{K}$$ L $\{S_{0}, S_{1}, \dots, S_{K-1}\}$ Let $S_{K} = -g_{K} + \sum_{k=1}^{K} S_{j} \beta_{j}$ C G can schmidt in H -inner product. $S_{K}^{T}HS_{j} = 0$ I =1,..., K -1 $(H - S_{j}^{F}D)$ $S_{i}^{T}H(\frac{k^{-1}}{j=1}S_{j}, \beta_{j}) = -S_{i}^{T}Hg_{K}$ $S_{i}^{T}HS_{i} = \frac{S_{i}^{T}Hg_{K}}{S_{i}^{T}HS_{i}} =
\frac{g_{K}^{T}HS_{i}}{S_{i}^{T}HS_{i}}$ $S_{i}^{T}HS_{i} = \frac{g_{K}^{T}HS_{i}}{S_{i}^{T}HS_{i}} = \frac{g_{K}^{T}HS_{i}}{S_{i}^{T}HS_{i}}$ $$\frac{g_0 = H \chi_0 - b}{50} = \nabla F(\chi_0)$$ $$\frac{g_1 = \chi_0 + \chi_0 g_0}{\chi_1 = \chi_0 + \chi_0 g_0}$$ $$= H \chi_0 + g_0$$ $$= H \chi_0 + g_0$$ $$= -\chi_0 + g_0 + g_0$$ $$= -\chi_0 -\chi$$ in H $$\underline{S}_{i}$$ \in $P_{i+1}(H)$ \underline{g}_{0} $\underline{e}_{K} \perp_{H}(H\underline{S}_{i})$ $\underline{i}=1,-k-2$ \underline{c}_{i} \underline{g}_{K} \underline{h} \underline{S}_{C} \underline{g}_{i} \underline{h} \underline{S}_{K-1} \underline{g}_{K-1} #### Summary of CG for Optimization - □ Conjugate gradient iteration produces the projection of x* onto span (s₀ s₁ ...s_k) - ☐ For constant SPD Hessian, *H*, CG iteration will be exact after: - \Box n iterations, or m < n iterations if H has only m distinct eigenvalues. - \Box For nonconstant **H**, CG is not exact. However **H** \rightarrow constant as $x \rightarrow x^*$ - ☐ Important to restart orthogonalization process after n iterations. - \Box Otherwise, **S**^T**HS** will be k x k, with k > n, and will be singular. - □ Method does not need H, nor $\underline{\boldsymbol{b}}$, only $\nabla \boldsymbol{f}$, plus line search in the direction $\underline{\boldsymbol{s}}_k$ (not $\underline{\boldsymbol{g}}_k := \nabla \boldsymbol{f}$, which would be steepest descent). ### Conjugate Gradient Method, continued $$\begin{aligned} & \boldsymbol{x}_0 = \text{initial guess} \\ & \boldsymbol{g}_0 = \nabla f(\boldsymbol{x}_0) \\ & \boldsymbol{s}_0 = -\boldsymbol{g}_0 \\ & \text{for } k = 0, 1, 2, \dots \\ & \text{Choose } \alpha_k \text{ to minimize } f(\boldsymbol{x}_k + \alpha_k \boldsymbol{s}_k) \\ & \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{s}_k \\ & \boldsymbol{g}_{k+1} = \nabla f(\boldsymbol{x}_{k+1}) \\ & \beta_{k+1} = (\boldsymbol{g}_{k+1}^T \boldsymbol{g}_{k+1})/(\boldsymbol{g}_k^T \boldsymbol{g}_k) \\ & \boldsymbol{s}_{k+1} = -\boldsymbol{g}_{k+1} + \beta_{k+1} \boldsymbol{s}_k \end{aligned}$$ end • Alternative formula for β_{k+1} is $$\beta_{k+1} = ((\boldsymbol{g}_{k+1} - \boldsymbol{g}_k)^T \boldsymbol{g}_{k+1}) / (\boldsymbol{g}_k^T \boldsymbol{g}_k)$$ ## Example: Conjugate Gradient Method - Use CG method to minimize $f(\boldsymbol{x}) = 0.5x_1^2 + 2.5x_2^2$ - Gradient is given by $\nabla f(\boldsymbol{x}) = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix}$ - Taking $x_0 = \begin{bmatrix} 5 & 1 \end{bmatrix}^T$, initial search direction is negative gradient, $$oldsymbol{s}_0 = -oldsymbol{g}_0 = - abla f(oldsymbol{x}_0) = egin{bmatrix} -5 \ -5 \end{bmatrix}$$ • Exact minimum along line is given by $\alpha_0=1/3$, so next approximation is $\boldsymbol{x}_1=\begin{bmatrix}3.333 & -0.667\end{bmatrix}^T$, and we compute new gradient, $$m{g}_1 = abla f(m{x}_1) = egin{bmatrix} 3.333 \\ -3.333 \end{bmatrix}$$ # Example, continued - So far there is no difference from steepest descent method - At this point, however, rather than search along new negative gradient, we compute instead $$\beta_1 = (\boldsymbol{g}_1^T \boldsymbol{g}_1)/(\boldsymbol{g}_0^T \boldsymbol{g}_0) = 0.444$$ which gives as next search direction $$s_1 = -g_1 + \beta_1 s_0 = \begin{bmatrix} -3.333 \\ 3.333 \end{bmatrix} + 0.444 \begin{bmatrix} -5 \\ -5 \end{bmatrix} = \begin{bmatrix} -5.556 \\ 1.111 \end{bmatrix}$$ • Minimum along this direction is given by $\alpha_1 = 0.6$, which gives exact solution at origin, as expected for quadratic function < interactive example > #### **Truncated Newton Methods** - Another way to reduce work in Newton-like methods is to solve linear system for Newton step by iterative method - Small number of iterations may suffice to produce step as useful as true Newton step, especially far from overall solution, where true Newton step may be unreliable anyway - Good choice for linear iterative solver is CG method, which gives step intermediate between steepest descent and Newton-like step - Since only matrix-vector products are required, explicit formation of Hessian matrix can be avoided by using finite difference of gradient along given vector - Given data (t_i, y_i) , find vector x of parameters that gives "best fit" in least squares sense to model function f(t, x), where f is nonlinear function of x - Define components of residual function $$r_i(\boldsymbol{x}) = y_i - f(t_i, \boldsymbol{x}), \quad i = 1, \dots, m$$ so we want to minimize $\phi({m x}) = {1\over 2} {m r}^T({m x}) {m r}({m x})$ • Gradient vector is $\nabla \phi({m x}) = {m J}^T({m x}) {m r}({m x})$ and Hessian matrix is $$oldsymbol{H}_{\phi}(oldsymbol{x}) = oldsymbol{J}^T(oldsymbol{x}) oldsymbol{J}(oldsymbol{x}) + \sum_{i=1}^m r_i(oldsymbol{x}) oldsymbol{H}_i(oldsymbol{x})$$ where J(x) is Jacobian of r(x), and $H_i(x)$ is Hessian of $r_i(x)$ $$H_{jk} = \frac{\partial}{\partial x_{k}} \left(\sum_{i=1}^{m} \frac{\partial r_{i}}{\partial x_{j}} r_{i} \right)$$ $$H_{jk} = \sum_{i=1}^{m} \frac{\partial x_{i}}{\partial x_{i}} \frac{\partial r_{i}}{\partial x_{k}} + \sum_{i=1}^{m} \frac{\partial^{2} r_{i}}{\partial x_{j}} \frac{\partial x_{k}}{\partial x_{k}}$$ $$H_{jk} = \int_{i=1}^{m} \frac{\partial x_{i}}{\partial x_{k}} \frac{\partial r_{i}}{\partial x_{k}} + \sum_{i=1}^{m} \frac{\partial^{2} r_{i}}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{k}}$$ Newton Step! $$X_{k+1} = X_k + S_k$$ $X_{k+1} = X_k + S_k$ - Given data (t_i, y_i) , find vector x of parameters that gives "best fit" in least squares sense to model function f(t, x), where f is nonlinear function of x - Define components of residual function $$r_i(\boldsymbol{x}) = y_i - f(t_i, \boldsymbol{x}), \quad i = 1, \dots, m$$ so we want to minimize $\phi({\boldsymbol x}) = \frac{1}{2} {\boldsymbol r}^T({\boldsymbol x}) {\boldsymbol r}({\boldsymbol x})$ • Gradient vector is $\nabla \phi({\bf x}) = {\bf J}^T({\bf x}) {\bf r}({\bf x})$ and Hessian matrix is $$oldsymbol{H}_{\phi}(oldsymbol{x}) = oldsymbol{J}^T(oldsymbol{x}) oldsymbol{J}(oldsymbol{x}) + \sum_{i=1}^m r_i(oldsymbol{x}) oldsymbol{H}_i(oldsymbol{x})$$ where J(x) is Jacobian of r(x), and $H_i(x)$ is Hessian of $r_i(x)$ ## Nonlinear Least Squares, continued Linear system for Newton step is $$\left(oldsymbol{J}^T(oldsymbol{x}_k)oldsymbol{J}(oldsymbol{x}_k) + \sum_{i=1}^m r_i(oldsymbol{x}_k)oldsymbol{H}_i(oldsymbol{x}_k) ight)oldsymbol{s}_k = -oldsymbol{J}^T(oldsymbol{x}_k)oldsymbol{r}(oldsymbol{x}_k)$$ - m Hessian matrices H_i are usually inconvenient and expensive to compute - Moreover, in H_{ϕ} each H_{i} is multiplied by residual component r_{i} , which is small at solution if fit of model function to data is good #### Gauss-Newton Method This motivates Gauss-Newton method for nonlinear least squares, in which second-order term is dropped and linear system $$oldsymbol{J}^T(oldsymbol{x}_k)oldsymbol{J}(oldsymbol{x}_k)oldsymbol{s}_k = -oldsymbol{J}^T(oldsymbol{x}_k)oldsymbol{r}(oldsymbol{x}_k)$$ is solved for approximate Newton step s_k at each iteration This is system of normal equations for linear least squares problem $$oldsymbol{J}(oldsymbol{x}_k)oldsymbol{s}_k\cong -oldsymbol{r}(oldsymbol{x}_k)$$ which can be solved better by QR factorization Next approximate solution is then given by $$x_{k+1} = x_k + s_k$$ and process is repeated until convergence ### **Example: Gauss-Newton Method** Use Gauss-Newton method to fit nonlinear model function $$f(t, \boldsymbol{x}) = x_1 \exp(x_2 t)$$ to data $$\left| \begin{array}{c|cccc} t & 0.0 & 1.0 & 2.0 & 3.0 \\ y & 2.0 & 0.7 & 0.3 & 0.1 \end{array} \right|$$ For this model function, entries of Jacobian matrix of residual function r are given by $$\{\boldsymbol{J}(\boldsymbol{x})\}_{i,1} = \frac{\partial r_i(\boldsymbol{x})}{\partial x_1} = -\exp(x_2 t_i)$$ $$\{\boldsymbol{J}(\boldsymbol{x})\}_{i,2} = \frac{\partial r_i(\boldsymbol{x})}{\partial x_2} = -x_1 t_i \exp(x_2 t_i)$$ ## Example, continued • If we take $x_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$, then Gauss-Newton step s_0 is given by linear least squares problem $$\begin{bmatrix} -1 & 0 \\ -1 & -1 \\ -1 & -2 \\ -1 & -3 \end{bmatrix} \boldsymbol{s}_0 \cong \begin{bmatrix} -1 \\ 0.3 \\ 0.7 \\ 0.9 \end{bmatrix}$$ whose solution is $$\boldsymbol{s}_0 = \begin{bmatrix} 0.69 \\ -0.61 \end{bmatrix}$$ • Then next approximate solution is given by $x_1 = x_0 + s_0$, and process is repeated until convergence # Example, continued | | $oldsymbol{x}_k$ | $\ oldsymbol{r}(oldsymbol{x}_k)\ _2^2$ | | |-------|------------------|--|--| | 1.000 | 0.000 | 2.390 | | | 1.690 | -0.610 | 0.212 | | | 1.975 | -0.930 | 0.007 | | | 1.994 | -1.004 | 0.002 | | | 1.995 | -1.009 | 0.002 | | | 1.995 | -1.010 | 0.002 | | < interactive example > ### Gauss-Newton Method, continued - Gauss-Newton method replaces nonlinear least squares problem by sequence of linear least squares problems whose solutions converge to solution of original nonlinear problem - If residual at solution is large, then second-order term omitted from Hessian is not negligible, and Gauss-Newton method may converge slowly or fail to converge - In such "large-residual" cases, it may be best to use general nonlinear minimization method that takes into account true full Hessian matrix ## Levenberg-Marquardt Method - Levenberg-Marquardt method is another useful alternative when Gauss-Newton approximation is inadequate or yields rank deficient linear least squares subproblem - In this method, linear system at each iteration is of form $$(\boldsymbol{J}^T(\boldsymbol{x}_k)\boldsymbol{J}(\boldsymbol{x}_k) + \mu_k \boldsymbol{I})\boldsymbol{s}_k = -\boldsymbol{J}^T(\boldsymbol{x}_k)\boldsymbol{r}(\boldsymbol{x}_k)$$ where μ_k is scalar parameter chosen by some strategy Corresponding linear least squares problem is $$egin{bmatrix} m{J}(m{x}_k) \ \sqrt{\mu_k}m{I} \end{bmatrix} m{s}_k \cong egin{bmatrix} -m{r}(m{x}_k) \ m{0} \end{bmatrix}$$ • With suitable strategy for
choosing μ_k , this method can be very robust in practice, and it forms basis for several effective software packages < interactive example > ### **Equality-Constrained Optimization** For equality-constrained minimization problem $$\min f(x)$$ subject to $g(x) = 0$ where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$, with $m \leq n$, we seek critical point of Lagrangian $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T g(\boldsymbol{x})$ Applying Newton's method to nonlinear system $$abla \mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = egin{bmatrix} abla f(oldsymbol{x}) + oldsymbol{J}_g^T(oldsymbol{x}) oldsymbol{\lambda} \\ oldsymbol{g}(oldsymbol{x}) \end{bmatrix} = oldsymbol{0}$$ we obtain linear system $$egin{bmatrix} egin{bmatrix} m{B}(m{x},m{\lambda}) & m{J}_g^T(m{x}) \ m{J}_g(m{x}) & m{O} \end{bmatrix} egin{bmatrix} m{s} \ m{\delta} \end{bmatrix} = -egin{bmatrix} abla f(m{x}) + m{J}_g^T(m{x})m{\lambda} \ m{g}(m{x}) \end{bmatrix}$$ for Newton step (s, δ) in (x, λ) at each iteration ## Sequential Quadratic Programming - Foregoing block 2×2 linear system is equivalent to quadratic programming problem, so this approach is known as *sequential quadratic programming* - Types of solution methods include - Direct solution methods, in which entire block 2×2 system is solved directly - Range space methods, based on block elimination in block 2×2 linear system - Null space methods, based on orthogonal factorization of matrix of constraint normals, ${m J}_q^T({m x})$ < interactive example > #### **Direct Method:** Solve 2 x 2 Block System via Gaussian Elimination $$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\lambda}) & \boldsymbol{J}_g^T(\boldsymbol{x}) \\ \boldsymbol{J}_g(\boldsymbol{x}) & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{s} \\ \boldsymbol{\delta} \end{bmatrix} = -\begin{bmatrix} \nabla f(\boldsymbol{x}) + \boldsymbol{J}_g^T(\boldsymbol{x}) \boldsymbol{\lambda} \\ \boldsymbol{g}(\boldsymbol{x}) \end{bmatrix}$$ ### Merit Function - Once Newton step (s, δ) determined, we need *merit* function to measure progress toward overall solution for use in line search or trust region - Popular choices include penalty function $$\phi_{\rho}(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2} \rho \, \boldsymbol{g}(\boldsymbol{x})^T \boldsymbol{g}(\boldsymbol{x})$$ and augmented Lagrangian function $$\mathcal{L}_{ ho}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{g}(\boldsymbol{x}) + \frac{1}{2} \, \rho \, \boldsymbol{g}(\boldsymbol{x})^T \boldsymbol{g}(\boldsymbol{x})$$ where parameter $\rho>0$ determines relative weighting of optimality vs feasibility • Given starting guess x_0 , good starting guess for λ_0 can be obtained from least squares problem $$\boldsymbol{J}_g^T(\boldsymbol{x}_0)\,\boldsymbol{\lambda}_0\cong -\nabla f(\boldsymbol{x}_0)$$ ## **Inequality-Constrained Optimization** - Methods just outlined for equality constraints can be extended to handle inequality constraints by using active set strategy - Inequality constraints are provisionally divided into those that are satisfied already (and can therefore be temporarily disregarded) and those that are violated (and are therefore temporarily treated as equality constraints) - This division of constraints is revised as iterations proceed until eventually correct constraints are identified that are binding at solution ## **Penalty Methods** - Merit function can also be used to convert equality-constrained problem into sequence of unconstrained problems - If x_{ρ}^{*} is solution to $$\min_{\boldsymbol{x}} \phi_{\rho}(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2} \rho \, \boldsymbol{g}(\boldsymbol{x})^{T} \boldsymbol{g}(\boldsymbol{x})$$ then under appropriate conditions $$\lim_{ ho o\infty}oldsymbol{x}_ ho^*=oldsymbol{x}^*$$ • This enables use of unconstrained optimization methods, but problem becomes ill-conditioned for large ρ , so we solve sequence of problems with gradually increasing values of ρ , with minimum for each problem used as starting point for next problem < interactive example > ### **Barrier Methods** For inequality-constrained problems, another alternative is barrier function, such as $$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{p} \frac{1}{h_i(\boldsymbol{x})}$$ or $$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{p} \log(-h_i(\boldsymbol{x}))$$ which increasingly penalize feasible points as they approach boundary of feasible region - Again, solutions of unconstrained problem approach x^* as $\mu \to 0$, but problems are increasingly ill-conditioned, so solve sequence of problems with decreasing values of μ - Barrier functions are basis for interior point methods for linear programming ### **Example: Constrained Optimization** Consider quadratic programming problem $$\min_{\mathbf{x}} f(\mathbf{x}) = 0.5x_1^2 + 2.5x_2^2$$ subject to $$g(\mathbf{x}) = x_1 - x_2 - 1 = 0$$ Lagrangian function is given by $$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x}) = 0.5x_1^2 + 2.5x_2^2 + \lambda(x_1 - x_2 - 1)$$ Since $$abla f(m{x}) = egin{bmatrix} x_1 \\ 5x_2 \end{bmatrix} \quad \text{and} \quad m{J}_g(m{x}) = \begin{bmatrix} 1 & -1 \end{bmatrix}$$ we have $$abla_x \mathcal{L}(\boldsymbol{x}, \lambda) = \nabla f(\boldsymbol{x}) + \boldsymbol{J}_g^T(\boldsymbol{x}) \lambda = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$ ### Example, continued So system to be solved for critical point of Lagrangian is $$x_1 + \lambda = 0$$ $$5x_2 - \lambda = 0$$ $$x_1 - x_2 = 1$$ which in this case is linear system $$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 5 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$ Solving this system, we obtain solution $$x_1 = 0.833, \quad x_2 = -0.167, \quad \lambda = -0.833$$ # Example, continued ### Barrier Functions for Inequality Constraints Solve modified unconstrained minimization problem, $$\phi_{\mu}(\boldsymbol{x}) = f(\boldsymbol{x}) - \mu \sum_{i=1}^{p} \frac{1}{h_{i}(\boldsymbol{x})}$$ - ☐ Starting in the feasible region! - \Box As $\mu \rightarrow 0$ it appears that the constraint is weaker. - □ However, the constraint goes to ∞ for any $\mu \neq 0$, so a small μ simply means the fence is *steeper*, which makes the minimization problem more challenging. $$f(\mathbf{x}) = \frac{1}{2}x_1^2 + \frac{5}{2}x_2^2$$ $$h(\mathbf{x}) = 1 - x_1 + x_2 < 0$$ # **Linear Programming** - One of most important and common constrained optimization problems is *linear programming* - One standard form for such problems is $$\min f(oldsymbol{x}) = oldsymbol{c}^T oldsymbol{x}$$ subject to $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ and $oldsymbol{x} \geq oldsymbol{0}$ where $$m < n$$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^m$, and $\boldsymbol{c}, \boldsymbol{x} \in \mathbb{R}^n$ - Feasible region is convex polyhedron in \mathbb{R}^n , and minimum must occur at one of its vertices - Simplex method moves systematically from vertex to vertex until minimum point is found ## Linear Programming, continued - Simplex method is reliable and normally efficient, able to solve problems with thousands of variables, but can require time exponential in size of problem in worst case - Interior point methods for linear programming developed in recent years have polynomial worst case solution time - These methods move through interior of feasible region, not restricting themselves to investigating only its vertices - Although interior point methods have significant practical impact, simplex method is still predominant method in standard packages for linear programming, and its effectiveness in practice is excellent # **Example: Linear Programming** To illustrate linear programming, consider $$\min_{\boldsymbol{x}} = \boldsymbol{c}^T \boldsymbol{x} = -8x_1 - 11x_2$$ subject to linear inequality constraints $$5x_1 + 4x_2 \le 40$$, $-x_1 + 3x_2 \le 12$, $x_1 \ge 0$, $x_2 \ge 0$ • Minimum value must occur at vertex of feasible region, in this case at $x_1=3.79,\,x_2=5.26,$ where objective function has value -88.2 # Example, continued ### **Steepest Descent** \Box Choose α to minimize $f(x_{k+1})$ #### Q: What are the units of ∇f ? - \Box What are the units of \underline{x}_k ? - □ What are the units of α_k ? (i.e., $\underline{x}_{k+1} = \underline{x}_k + \underline{s}_k$, $\underline{s}_k = -\alpha_k \nabla f_k$) # Trust Region Methods - Alternative to line search is trust region method, in which approximate solution is constrained to lie within region where quadratic model is sufficiently accurate - If current trust radius is binding, minimizing quadratic model function subject to this constraint may modify direction as well as length of Newton step - Accuracy of quadratic model is assessed by comparing actual decrease in objective function with that predicted by quadratic model, and trust radius is increased or decreased accordingly ## Trust Region Methods, continued