Chapter 2, Linear Systems

Existence, Uniqueness, and Conditioning Solving Linear Systems Special Types of Linear Systems Software for Linear Systems

Outline

- Existence, Uniqueness, and Conditioning
- Solving Linear Systems
- Special Types of Linear Systems
- Software for Linear Systems

The Geometry of Linear Equations¹

• Example, 2×2 system:

$$2x - y = 1$$
$$x + y = 5$$

- Can look at this system by rows or columns.
- We will do both.

¹Gilbert Strang: Linear Algebra and Its Applications

Row Form

• In the 2×2 system, each equation represents a line:

$$2x - y = 1 \qquad \text{line 1}$$
$$x + y = 5 \qquad \text{line 2}$$

• The intersection of the two lines gives the unique point (x, y) = (2, 3), which is the solution.

Column Form

- The second (and more important) geometry is column based.
- Here, we view the system of equations as one vector equation:

Column form
$$x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$
.

• The problem is to find coefficients, x and y, such that the combination of vectors on the left equals the vector on the right.

Row Form: A Case with n=3.

$$2u + v + w = 5$$
Three planes
$$4u - 6v = -2$$

$$-2u + 7v + 2w = 9$$

- Each equation (row) defines a plane in \mathbb{R}^3 .
- The first plane is 2u + v + w = 5 and it contains points $(\frac{5}{2},0,0)$ and (0,5,0) and (0,0,5).
- It is determined by three points, provided they do not lie on a line.
- Changing 5 to 10 would shift the plane to be parallel this one, with points (5,0,0) and (0,10,0) and (0,0,10).

Row Form: A Case with n=3, cont'd.

- The second plane is 4u 6v = -2.
- \bullet It is vertical because it can take on any w value.
- The intersection of this plane with the first is a *line*.
- The third plane, -2u + 7v + 2w = 9 intersects this line at a point, (u, v, w) = (1, 1, 2), which is the solution.
- In n dimensions, the solution is the intersection point of n hyperplanes, each of dimension n-1. A bit confusing.

Note that u=5 is also a plane....

Row Form

The green & blue planes (rows 2 and 3) intersect in a line. Equation 1 (red) intersects this line.

$$2u + v + w = 5$$

$$4u - 6v = -2$$

$$-2u + 7v + 2w = 9$$

Column Vectors and Linear Combinations

• The preceding system is viewed as the vector equation

$$u\begin{bmatrix} 2\\4\\-2 \end{bmatrix} + v\begin{bmatrix} 1\\-6\\7 \end{bmatrix} + w\begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} = \mathbf{b}.$$

- Our task is to find the multipliers, u, v, and w.
- The vector \mathbf{b} is identified with the point (5,-2,9).
- We can view **b** as a list of numbers, a point, or an arrow.
- For n > 3, it's probably best to view it as a list of numbers.

Vector Addition Example

Linear Combination

The Singular Case: Row Picture

• No solution.

The Singular Case: Row Picture

• Infinite number of solutions.

The Singular Case: Column Picture

• No solution.

The Singular Case: Column Picture

• Infinite number of solutions.

Singular Case: Row Picture with n=3

(a) two parallel planes

(b) no intersection

(c) line of intersection

(d) all planes parallel

Singular Case: Column Picture with n=3

• In this case, the three columns of the system matrix lie in the same plane.

Example:
$$u\begin{bmatrix} 1\\2\\3 \end{bmatrix} + v\begin{bmatrix} 4\\5\\6 \end{bmatrix} + w\begin{bmatrix} 7\\8\\9 \end{bmatrix} = \mathbf{b}.$$

Matrix Form and Matrix-Vector Products.

• We start with the familiar (row) form

$$2u + v + w = 5$$

$$4u - 6v = -2$$

$$-2u + 7v + 2w = 9$$

• In matrix form, this is

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}, \text{ or } A\mathbf{u} = \mathbf{b}.$$

• Of course, this must equal our column form,

$$u\begin{bmatrix} 2\\4\\-2 \end{bmatrix} + v\begin{bmatrix} 1\\-6\\7 \end{bmatrix} + w\begin{bmatrix} 1\\0\\2 \end{bmatrix} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} = \mathbf{b}.$$

Matrix Form and Matrix-Vector Products, 2.

• So, if A is the matrix with columns \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 ,

$$A := \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} =: \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}, \quad \text{and } \mathbf{u} := \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

• Then

$$A\mathbf{u} = u\,\mathbf{a}_1 + v\,\mathbf{a}_2 + w\,\mathbf{a}_3$$

Matrix Form and Matrix-Vector Products, 3.

• In general, if \mathbf{x} is the *n*-vector

$$\mathbf{x} \coloneqq \left[egin{array}{c} x_1 \ x_2 \ dots \ x_n \end{array}
ight],$$

and A is an $m \times n$ matrix, then

$$A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

= linear combination of the columns of A .

• Always.

Matrix-Vector Products, Example.

If
$$\hat{\mathbf{x}} := V (V^T A V)^{-1} V^T \mathbf{b}$$

$$= V \mathbf{y}.$$

Then $\hat{\mathbf{x}} = \text{linear combination of the columns of } V$.

- $\hat{\mathbf{x}}$ lies in the *column space* of V.
- $\hat{\mathbf{x}}$ lies in the range of V.
- $\hat{\mathbf{x}} \in \operatorname{span}(V)$

Sigma Notation

• Let A be an $m \times n$ matrix,

$$A = \left[\mathbf{a}_1 \ \cdots \ \mathbf{a}_j \ \cdots \ \mathbf{a}_n \right]$$

$$= \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}.$$

• Then

$$\mathbf{w} = A\mathbf{x} = \sum_{j=1}^{n} x_j \, \mathbf{a}_j = \sum_{j=1}^{n} \mathbf{a}_j \, x_j$$

$$w_i = (A\mathbf{x})_i = \sum_{j=1}^n a_{ij} x_j$$

Matrix Multiplication

If
$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$$
,

Then
$$C = AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 \end{bmatrix}$$
.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Q: (Important.) Suppose A and B are $n \times n$ matrices.

- How many floating point operations (flops) are required to compute C = AB?
- What is the number of memory accesses?

Systems of Linear Equations

- Given $m \times n$ matrix \boldsymbol{A} and m-vector \boldsymbol{b} , find unknown n-vector \boldsymbol{x} satisfying $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$
- System of equations asks "Can b be expressed as linear combination of columns of A?"
- ullet If so, coefficients of linear combination are given by components of solution vector $oldsymbol{x}$
- Solution may or may not exist, and may or may not be unique
- For now, we consider only *square* case, m = n

Singularity and Nonsingularity

 $n \times n$ matrix \boldsymbol{A} is *nonsingular* if it has any of following equivalent properties

- 1 Inverse of A, denoted by A^{-1} , exists
- $extit{det}(\boldsymbol{A}) \neq 0$
- For any vector $z \neq 0$, $Az \neq 0$

Existence and Uniqueness

- Existence and uniqueness of solution to Ax = b depend on whether A is singular or nonsingular
- Can also depend on b, but only in singular case
- If $b \in \text{span}(A)$, system is *consistent*

$oldsymbol{A}$	\boldsymbol{b}	# solutions
nonsingular	arbitrary	one (unique)
singular	$oldsymbol{b} \in span(oldsymbol{A})$	infinitely many
singular	$oldsymbol{b} otin \mathtt{span}(oldsymbol{A})$	none

Geometric Interpretation

- In two dimensions, each equation determines straight line in plane
- Solution is intersection point of two lines
- If two straight lines are not parallel (nonsingular), then intersection point is unique
- If two straight lines are parallel (singular), then lines either do not intersect (no solution) or else coincide (any point along line is solution)
- In higher dimensions, each equation determines hyperplane; if matrix is nonsingular, intersection of hyperplanes is unique solution

Example: Nonsingularity

• 2×2 system

$$2x_1 + 3x_2 = b_1$$

 $5x_1 + 4x_2 = b_2$

or in matrix-vector notation

$$m{A}m{x} = egin{bmatrix} 2 & 3 \ 5 & 4 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \end{bmatrix} = m{b}$$

is nonsingular regardless of value of b

• For example, if $\mathbf{b} = \begin{bmatrix} 8 & 13 \end{bmatrix}^T$, then $\mathbf{x} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ is unique solution

Example: Singularity

• 2×2 system

$$m{A}m{x} = egin{bmatrix} 2 & 3 \ 4 & 6 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \end{bmatrix} = m{b}$$

is singular regardless of value of b

- With $b = \begin{bmatrix} 4 & 7 \end{bmatrix}^T$, there is no solution
- With $b = \begin{bmatrix} 4 & 8 \end{bmatrix}^T$, $x = \begin{bmatrix} \gamma & (4-2\gamma)/3 \end{bmatrix}^T$ is solution for any real number γ , so there are infinitely many solutions

Nearly Singular Matrices

 In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

[An interesting question: For the 2x2 case, can you relate the angle to the condition number ?]

Conditioning of Linear Systems: Ax = b

As before, we ask the question,

"If we perturb b, how much change do we see in x?"

$$A(\underline{x} + \Delta \underline{x}) = (\underline{b} + \Delta \underline{b})$$

To pursue the answer to this question, we need a measure of the size of Δx .

- ☐ We introduce *vector norms*, $||\underline{x}||$, which measure the magnitude of a vector \underline{x} .
- Vector norms are also useful in measuring closeness of approximate solutions.
- □ Their closely-associated *matrix norms* are valuable in predicting how easy it is to solve a system, either directly (via *LU* factorization) or iteratively.

Vector Norms

- Magnitude, modulus, or absolute value for scalars generalizes to norm for vectors
- We will use only *p*-norms, defined by

$$\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for integer p > 0 and n-vector \boldsymbol{x}

- Important special cases
 - 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
 - 2-norm: $\|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$
 - ∞ -norm: $\|\boldsymbol{x}\|_{\infty} = \max_i |x_i|$

Example: Vector Norms

Drawing shows unit sphere in two dimensions for each norm

Norms have following values for vector shown

$$\|\boldsymbol{x}\|_1 = 2.8 \quad \|\boldsymbol{x}\|_2 = 2.0 \quad \|\boldsymbol{x}\|_{\infty} = 1.6$$

Equivalence of Norms

- In general, for any vector ${m x}$ in \mathbb{R}^n , $\|{m x}\|_1 \geq \|{m x}\|_2 \geq \|{m x}\|_\infty$
- However, we also have

$$\|\boldsymbol{x}\|_{1} \leq \sqrt{n} \|\boldsymbol{x}\|_{2}, \quad \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \|\boldsymbol{x}\|_{\infty}, \quad \|\boldsymbol{x}\|_{1} \leq n \|\boldsymbol{x}\|_{\infty}$$

- Thus, for given n, norms differ by at most a constant, and hence are equivalent: if one is small, they must all be proportionally small.
- Important Point: Equivalence of Norms (for n fixed):

For all vector norms $||\underline{\mathbf{x}}||_{\mathsf{m}}$ and $||\underline{\mathbf{x}}||_{\mathsf{M}} \exists$ constants c and C such that

$$c \|\underline{x}\|_m \le \|\underline{x}\|_M \le C \|\underline{x}\|_m$$

Allows us to work with the norm that is most convenient.

Properties of Vector Norms

- For any vector norm
 - $\bullet \|x\| > 0 \text{ if } x \neq 0$
 - $\|\gamma x\| = |\gamma| \cdot \|x\|$ for any scalar γ
 - $\|x+y\| \le \|x\| + \|y\|$ (triangle inequality)
- In more general treatment, these properties taken as definition of vector norm
- Useful variation on triangle inequality

•
$$|||x|| - ||y|| | \le ||x - y||$$

Matrix Norms

 Matrix norm corresponding to given vector norm is defined by

$$\|oldsymbol{A}\| = \max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|}{\|oldsymbol{x}\|}$$

 Norm of matrix measures maximum stretching matrix does to any vector in given vector norm

Example....

Matrix Norms

For any vector norm $||\underline{x}||_*$, define

$$||A||_* = \max_{\underline{x} \neq 0} \frac{||A\underline{x}||_*}{||\underline{x}||_*} = \max_{||\underline{x}||_* = 1} ||A\underline{x}||_*$$

Often called the induced or subordinate matrix norm associated with the vector norm $||\underline{x}||_*$

Singularity and Nonsingularity
Norms
Condition Number
Error Bounds

Matrix Norms

 Matrix norm corresponding to vector 1-norm is maximum absolute column sum

$$\|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

 Matrix norm corresponding to vector ∞-norm is maximum absolute row sum

$$\|oldsymbol{A}\|_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$$

• Handy way to remember these is that matrix norms agree with corresponding vector norms for $n \times 1$ matrix

Matrix Norms: 2-norm

- ☐ The 2-norm of a symmetric matrix is max_i $|\lambda_i|$
- lacksquare Here, λ_i is the ith eigenvalue of A
- We say A is symmetric if $a_{ij} = a_{ji}$ for $I,j \in \{1,2,...,n\}^2$
- \Box That is, A = A^T (A is equal to its transpose)

Symmetric Matrices

$$A = \begin{bmatrix} 1 & 4 & -2 \\ 4 & 2 & -5 \\ -2 & -5 & 3 \end{bmatrix} = A^{T}$$

$$B = \begin{bmatrix} 1 & 4 & -2 \\ 4 & 2 & -5 \\ 0 & -5 & 3 \end{bmatrix}$$

$$B^T = \begin{bmatrix} 1 & 4 & 0 \\ 4 & 2 & -5 \\ -2 & -5 & 3 \end{bmatrix}$$

- A is symmetric: $a_{ij} = a_{ji}$ for all i, j.
- B is nonsymmetric: $b_{ij} \neq b_{ji}$ for all i, j.
- Many (many) systems give rise to symmetric matrices.

Properties of Matrix Norms

- Any matrix norm satisfies
 - ||A|| > 0 if $A \neq 0$
 - $\|\gamma A\| = |\gamma| \cdot \|A\|$ for any scalar γ
 - $||A + B|| \le ||A|| + ||B||$
- Matrix norms we have defined also satisfy
 - $\bullet \; \|\boldsymbol{A}\boldsymbol{B}\| \leq \|\boldsymbol{A}\| \cdot \|\boldsymbol{B}\|$
 - ullet $\|Ax\| \leq \|A\| \cdot \|x\|$ for any vector x

Matrix Norm Example

- Matrix norms are particularly useful in analyzing iterative solvers.
- Consider the system $A\mathbf{x} = \mathbf{b}$ to be solved with the following iterative scheme.
- Start with initial guess $\mathbf{x}_0 = 0$ and, for $k=0, 1, \ldots,$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + M \left(\mathbf{b} - A \mathbf{x}_k \right). \tag{1}$$

- Let G := I MA. We can use the matrix norm of G to bound the error in the above iteration and determine its rate of convergence.
- Begin by defining the error to be $\mathbf{e}_k := \mathbf{x} \mathbf{x}_k$.
- Note that $\mathbf{b} A\mathbf{x}_k = A\mathbf{x} A\mathbf{x}_k = A(\mathbf{x} \mathbf{x}_k) = A\mathbf{e}_k$.
- Using the preceding result and subtracting (1) from the equation $\mathbf{x} = \mathbf{x}$ yields the error equation

$$\mathbf{e}_{k+1} = \mathbf{e}_k - M A \mathbf{e}_k = [I - MA] \mathbf{e}_k = G \mathbf{e}_k.$$

Matrix Norm Example

• Error equation

$$\mathbf{e}_{k+1} = \mathbf{e}_k - M A \mathbf{e}_k = [I - MA] \mathbf{e}_k = G \mathbf{e}_k.$$

• From the definition of the matrix norm, we have

$$||\mathbf{e}_k|| \le ||G|| ||\mathbf{e}_{k-1}|| \le ||G||^2 ||\mathbf{e}_{k-2}|| \dots \le ||G||^k ||\mathbf{e}_0||$$

• With $\mathbf{x}_0 = 0$, we have $\mathbf{e}_0 = \mathbf{x}$ and thus the relative error

$$\frac{||\mathbf{e}_k||}{||\mathbf{x}||} \le ||G||^k$$

- If ||G|| < 1, the scheme (1) is convergent.
- By the equivalence of norms, if ||G|| < 1 for any matrix norm, it is convergent.
- Q: Suppose $|G| \le 0.25$. What is the bound on the number of iterations required to converge to machine precision in IEEE 64-bit arithmetic? (Hint: Think carefully. What is the best base to use in considering this question?)

Matrix Norm Example

• Consider the following example:

$$A = nI + 0.1 R, R = \text{rand}(n, n) r_{ij} \in [0, 1]$$

 $M = \text{diag}(1/a_{ii})$

• In this case,

$$g_{ii} = 0$$
 $g_{ij} = 0.1 \frac{-r_{ij}}{n + 0.1 r_{ii}}$

• The ∞ -norm for G is given by

$$||G||_{\infty} = \max_{i} \sum_{j=1}^{n} |g_{ij}| \le \max_{i} \sum_{i \neq j} M^* = (n-1)M^*,$$

where

$$M^* := \max_{i \neq j} |g_{ij}| < \frac{0.1}{n}.$$

- In this case, we have a relative error bounded by $||G||_{\infty}^k \leq (0.1)^k$.
- Q: Estimate the number of iterations required to reduce the error to machine epsilon when using IEEE 64-bit floating point arithmetic.

Condition Number

 Condition number of square nonsingular matrix A is defined by

$$\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\|$$

- By convention, $cond(A) = \infty$ if A is singular
- Since

$$\|oldsymbol{A}\| \cdot \|oldsymbol{A}^{-1}\| = \left(\max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|}{\|oldsymbol{x}\|}
ight) \cdot \left(\min_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|}{\|oldsymbol{x}\|}
ight)^{-1}$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

ullet Large $\operatorname{cond}(\boldsymbol{A})$ means \boldsymbol{A} is nearly singular

Condition Number Examples

$$A_1 = \begin{bmatrix} 0.87 & 0.5 \\ -0.5 & 0.87 \end{bmatrix}, \text{ cond}_2(A_1) = 1$$
 $A_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}, \text{ cond}_2(A_2) = 4$

$$\mathbf{A}_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}, \quad \operatorname{cond}_2(\mathbf{A}_2) = 4$$

$$A_3 = \begin{bmatrix} 1.73 & 0.25 \\ -1 & 0.43 \end{bmatrix}, \text{ cond}_2(A_3) = 4$$

$$A_3 = \begin{bmatrix} 1.73 & 0.25 \\ -1 & 0.43 \end{bmatrix}$$
, $\operatorname{cond}_2(A_3) = 4$ $A_4 = \begin{bmatrix} 1.52 & 0.91 \\ 0.47 & 0.94 \end{bmatrix}$, $\operatorname{cond}_2(A_4) = 4$

Properties of Condition Number

- For any matrix A, $cond(A) \ge 1$
- For identity matrix, $cond(\mathbf{I}) = 1$
- For any matrix A and scalar γ , $\operatorname{cond}(\gamma A) = \operatorname{cond}(A)$
- For any diagonal matrix $m{D} = \mathrm{diag}(d_i)$, $\mathrm{cond}(m{D}) = \frac{\max |d_i|}{\min |d_i|}$

Computing Condition Number

- Definition of condition number involves matrix inverse, so it is nontrivial to compute
- Computing condition number from definition would require much more work than computing solution whose accuracy is to be assessed
- In practice, condition number is estimated inexpensively as byproduct of solution process
- Matrix norm ||A|| is easily computed as maximum absolute column sum (or row sum, depending on norm used)
- Estimating $\|A^{-1}\|$ at low cost is more challenging

Computing Condition Number, continued

• From properties of norms, if Az = y, then

$$rac{\|oldsymbol{z}\|}{\|oldsymbol{y}\|} \leq \|oldsymbol{A}^{-1}\|$$

and bound is achieved for optimally chosen y

- Efficient condition estimators heuristically pick y with large ratio ||z||/||y||, yielding good estimate for $||A^{-1}||$
- Good software packages for linear systems provide efficient and reliable condition estimator

Error Bounds

- Condition number yields error bound for computed solution to linear system
- Let x be solution to Ax=b, and let \hat{x} be solution to $A\hat{x}=b+\Delta b$
- If $\Delta x = \hat{x} x$, then

$$b + \Delta b = A(\hat{x}) = A(x + \Delta x) = Ax + A\Delta x$$

which leads to bound

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}$$

for possible relative change in solution x due to relative change in right-hand side b

Error Bounds, continued

• Similar result holds for relative change in matrix: if $(A + E)\hat{x} = b$, then

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}$$

 If input data are accurate to machine precision, then bound for relative error in solution x becomes

$$\frac{\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \, \epsilon_{\text{mach}}$$

• Computed solution loses about $\log_{10}(\operatorname{cond}(\boldsymbol{A}))$ decimal digits of accuracy relative to accuracy of input Example

A Nearly Singular Example

- Clearly, as $\theta \longrightarrow 0$ the matrix becomes singular.
- Can show that

cond
$$= \sqrt{\frac{1+|c|}{1-|c|}}$$

 $\approx \frac{2}{\theta}$

for small θ (by Taylor series!) $matlab\ demo.$

Matlab Demo cr2.m

This example plots cond(A) as a function of θ , as well as the estimates from the preceding slide.

- The computed value of cond(A) given by matlab exactly matches [$(1+|\cos\theta|) / (1-|\cos\theta|)$]^{1/2}
- The more interesting result is $cond(A) \sim 2 / \theta$, which is very accurate for small angles.

```
%% Note - eigenvalues of A'*A are evals of C=A'*A =
ક ક
୫ ୫
       1 c
୫ ୫
       c 1
8 8
   (1-lam)*(1-lam) - c^2, which is z^2 - c^2 with roots
୫ ୫
୫ ୫
     z=c and z=-c
ક ક
    1-lam = c --> lam = 1 - c
8 8
     1-lam = -c --> lam = 1+c
8 8
8 8
     K2 = 1+c / 1 - c
୫ ୫
ક ક
       ~ 2 / (1/2 theta^2) for small theta ~ 4 / theta^2
୫ ୫
8 8
     Therefore:
                    K(A) = sqrt(K2) \sim 2/theta
8 8
format compact
jj=0; for j=.01:.01:(2*pi); cj=cos(j);sj=sin(j); jj=jj+1;
    R=[ cj -sj ; sj cj ];
    a1 = [1; 0]; a2 = R*a1; A = [a1 a2];
    C(jj) = cond(A);
    t(jj)=j; aj = abs(cj); z(jj)=sqrt((1+aj)/(1-aj));
plot(t,C,'r-',t,z,'k-.',t,2./abs(t),'g-','LineWidth',3);
axis([0 2*pi 0 40]);text(pi,2,'2/\theta','FontSize',18) axis square;
xlabel('\theta','FontSize',18);ylabel('Cond(A)','FontSize',20)
title('Cond. Number: Nearly Parallel Unit Columns', 'FontSize', 18)
```


Error Bounds – Illustration

 In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

Illustration of Impact of cond(A)

```
%% Check the error in solving Au=f vs eps*cond(A).
%% Test problem is finite difference solution to -u" = f
%% on [0,1] with u(0)=u(1)=0.

for k=2:20; n = (2^k)-1; h=1/(n+1);

e = ones(n,1);
A = spdiags([-e 2*e -e],-1:1, n,n)/(h*h);
x=1:n; x=h*x';
ue=1+sin(pi*(8*x.*x));

f=A*ue;
u=A\f;
hk(k)=h; ck(k)=cond(A);
ek(k)=max(abs(u-ue))/max(ue);
end;
loglog(hk,ek,'r-',hk,eps*ck,'b-');
axis square
```

Here, we see that \epsilon_M * cond(A) bounds the error in the solution to Au=f, as expected.

Error Bounds – Caveats

- Normwise analysis bounds relative error in largest components of solution; relative error in smaller components can be much larger
 - Componentwise error bounds can be obtained, but somewhat more complicated
- Conditioning of system is affected by relative scaling of rows or columns
 - Ill-conditioning can result from poor scaling as well as near singularity
 - Rescaling can help the former, but not the latter

Residual

• Residual vector of approximate solution \hat{x} to linear system Ax = b is defined by

$$r = b - A\hat{x}$$

- In theory, if A is nonsingular, then $\|\hat{x} x\| = 0$ if, and only if, $\|r\| = 0$, but they are not necessarily small simultaneously
- Since

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \cdot \|\hat{\boldsymbol{x}}\|}$$

small relative residual implies small relative error in approximate solution only if A is well-conditioned

Residual, continued

• If computed solution \hat{x} exactly satisfies

$$(\boldsymbol{A} + \boldsymbol{E})\hat{\boldsymbol{x}} = \boldsymbol{b}$$

then

$$rac{\|oldsymbol{r}\|}{\|oldsymbol{A}\| \; \|\hat{oldsymbol{x}}\|} \leq rac{\|oldsymbol{E}\|}{\|oldsymbol{A}\|}$$

so large *relative residual* implies large backward error in matrix, and algorithm used to compute solution is unstable

- Stable algorithm yields small relative residual regardless of conditioning of nonsingular system
- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate

Solving Linear Systems

- To solve linear system, transform it into one whose solution is same but easier to compute
- What type of transformation of linear system leaves solution unchanged?
- We can $\frac{premultiply}{premultiply}$ (from left) both sides of linear system Ax = b by any $\frac{premultiply}{premultiply}$ matrix M without affecting solution
- Solution to MAx = Mb is given by

$$x = (MA)^{-1}Mb = A^{-1}M^{-1}Mb = A^{-1}b$$

Example: Permutations

- Permutation matrix P has one 1 in each row and column and zeros elsewhere, i.e., identity matrix with rows or columns permuted
- Note that $P^{-1} = P^T$

Matlab Demo: perm.m

- Premultiplying both sides of system by permutation matrix, PAx = Pb, reorders rows, but solution x is unchanged
- Postmultiplying A by permutation matrix, APx = b, reorders columns, which permutes components of original solution

$$x = (AP)^{-1}b = P^{-1}A^{-1}b = P^{T}(A^{-1}b)$$

Example: Diagonal Scaling

- Row scaling: premultiplying both sides of system by nonsingular diagonal matrix D, DAx = Db, multiplies each row of matrix and right-hand side by corresponding diagonal entry of D, but solution x is unchanged
- Column scaling: postmultiplying A by D, ADx = b, multiplies each column of matrix by corresponding diagonal entry of D, which rescales original solution

$$x = (AD)^{-1}b = D^{-1}A^{-1}b$$

Premultiply by Diagonal Matrix: Row Scaling

$$\begin{pmatrix} d_1 a_{11} & d_1 a_{12} & d_1 a_{13} \\ d_2 a_{21} & d_2 a_{22} & d_2 a_{23} \\ d_3 a_{31} & d_3 a_{32} & d_3 a_{33} \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Note on Row Scaling / Permutation

 $D\mathbf{v} = \text{scale rows of } \mathbf{v}$

 $P\mathbf{v}$ = permute rows of \mathbf{v}

 $DA = [D\mathbf{a}_1 D\mathbf{a}_2 \cdots D\mathbf{a}_n] = \text{scale rows of } A$

 $PA = [P\mathbf{a}_1 P\mathbf{a}_2 \cdots P\mathbf{a}_n] = \text{permute rows of } A$

Triangular Linear Systems

- What type of linear system is easy to solve?
- If one equation in system involves only one component of solution (i.e., only one entry in that row of matrix is nonzero), then that component can be computed by division
- If another equation in system involves only one additional solution component, then by substituting one known component into it, we can solve for other component
- If this pattern continues, with only one new solution component per equation, then all components of solution can be computed in succession.
- System with this property is called triangular

Triangular Matrices

- Two specific triangular forms are of particular interest
 - *lower triangular*: all entries *above* main diagonal are zero, $a_{ij} = 0$ for i < j
 - upper triangular: all entries below main diagonal are zero, $a_{ij} = 0$ for i > j
- Successive substitution process described earlier is especially easy to formulate for lower or upper triangular systems
- Any triangular matrix can be permuted into upper or lower triangular form by suitable row and column permutation

Forward-Substitution

ullet Forward-substitution for lower triangular system Lx=b

$$x_1 = b_1/\ell_{11}, \quad x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 2, \dots, n$$

```
for j=1 to n if \ell_{jj}=0 then stop x_j=b_j/\ell_{jj} for i=j+1 to n b_i=b_i-\ell_{ij}x_j end end
```

```
{ loop over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }
```


Back-Substitution

ullet Back-substitution for upper triangular system Ux=b

$$x_n = b_n/u_{nn}, \quad x_i = \left(b_i - \sum_{j=i+1}^n u_{ij}x_j\right) / u_{ii}, \quad i = n-1, \dots, 1$$

```
for j=n to 1 if u_{jj}=0 then stop x_j=b_j/u_{jj} for i=1 to j-1 b_i=b_i-u_{ij}x_j end end
```

```
{ loop backwards over columns }
{ stop if matrix is singular }
{ compute solution component }

{ update right-hand side }
```


Solution of Lower Triangular Systems

$$\begin{bmatrix} l_{11} & & & & & \\ l_{21} & l_{22} & & & & \\ l_{31} & l_{32} & l_{33} & & & \\ \vdots & & & \ddots & & \\ \vdots & & & \ddots & & \\ \vdots & & & \ddots & & \\ l_{n1} & l_{n2} & l_{n3} & \cdots & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

for
$$i = 1, 2, ..., n$$
: $x_i = \frac{1}{l_{ii}} \left(b_i - \sum_{j=1}^{i-1} l_{ij} x_j \right)$.

As written:

for i = 1: n $x_i = b_i$ for j = 1: i - 1 $x_i = x_i - l_{ij} x_j$ end $x_i = x_i/l_{ii}$ end

Better memory access (faster):

for
$$j = 1:n$$

if $l_{jj} = 0$, stop - matrix is singular.
 $x_j = b_j/l_{jj}$
for $i = j + 1:n$
 $b_i = b_i - l_{ij} x_j$
end
end

Solution of Upper Triangular Systems

for
$$i = n, n - 1, ..., 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^n u_{ij} x_j \right)$.

As written:

for i = n : 1 $x_i = b_i$ for j = i + 1 : n $x_i = x_i - u_{ij} x_j$ end $x_i = x_i/u_{ii}$ end

Better memory access (faster):

for
$$j = n : 1$$

if $u_{jj} = 0$, stop - matrix is singular.
 $x_j = b_j/u_{jj}$
for $i = 1 : j - 1$
 $b_i = b_i - u_{ij} x_j$
end
end
What is the cost ??

end

Solution of Upper Banded Systems

Suppose U is a banded matrix: $u_{ij} = 0, j > i + \beta$.

For example, $\beta = 2$:

for
$$i = n, n - 1, ..., 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^{\min(i+\beta,n)} u_{ij} x_j \right)$.

What is the cost ??

Solution of Upper Banded Systems

for
$$i = n, n - 1, ..., 1$$
: $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^{\min(i+\beta,n)} u_{ij} x_j \right)$.

As written:

Better memory access (faster):

```
\begin{array}{lll} \text{for } i=n:1 & \text{for } j=n:1 \\ x_i = b_i, \ j_{\max} := \min(j+\beta,n) & \text{if } u_{jj} = 0, \text{ stop - matrix is singular.} \\ \text{for } j=i+1:j_{\max} & x_j = b_j/u_{jj}, \ i_{\min} := \max(1,j-\beta) \\ x_i = x_i - u_{ij}x_j & \text{for } i=i_{\min}:j-1 \\ \text{end} & b_i = b_i - u_{ij}x_j \\ \text{end} & \text{end} \end{array}
```

- In this case, there are $\sim 2\beta n$ operations and $\sim \beta n$ memory references (one for each u_{ij}).
- Often $\beta \ll n$, which means that the upper-banded system is *much* faster to solve than the full upper triangular system.
- The same savings applies to the lower-banded case.

Generating Triangular Systems: LU Factorization

A = LU

• Example:

$$\begin{bmatrix} 1 & 2 & 3 & & & \\ & 4 & 4 & 6 & 1 \\ & 8 & 8 & 9 & 2 \\ & 6 & 1 & 3 & 3 \\ & 4 & 2 & 8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \\ 4 \end{bmatrix}$$

- First column is already in upper triangular form.
- Eliminate second column:

- $a_{22} = 4$ is the *pivot*
- row₂ is the *pivot row*
- $l_{32} = \frac{8}{4}$, $l_{42} = \frac{6}{4}$, $l_{52} = \frac{4}{4}$, is the multiplier column.

• Augmented form. Store **b** in A(:, n + 1):

$$\begin{bmatrix} 1 & 2 & 3 & & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & 8 & 8 & 9 & 2 & 4 \\ & 6 & 1 & 3 & 3 & 4 \\ & 4 & 2 & 8 & 4 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & & 0 & -3 & 0 & -4 \\ & & -5 & -6 & \frac{3}{2} & -2 \\ & & -2 & 2 & 3 & 0 \end{bmatrix}$$

This Case.

General Case.

pivot = 4 =
$$a_{kk}$$
 when zeroing the k th column.
pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ = $\mathbf{r}_k^T = a_{kj}$, $j = k+1, \ldots, n \begin{bmatrix} +b_k \end{bmatrix}$
multiplier column = $\frac{1}{4} \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix}$ = $\mathbf{c}_k = \frac{a_{ik}}{a_{kk}}$, $i = k+1, \ldots, n$

• Augmented form. Store **b** in A(:, n + 1):

This Case.

General Case.

pivot = 4 =
$$a_{kk}$$
 when zeroing the k th column.
pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ = $\mathbf{r}_k^T = a_{kj}$, $j = k+1, \ldots, n \left[+b_k \right]$
multiplier column = $\begin{bmatrix} 1 \\ 4 \\ 6 \\ 4 \end{bmatrix}$ = $\mathbf{c}_k = \frac{a_{ik}}{a_{kk}}$, $i = k+1, \ldots, n$

• Augmented form. Store **b** in A(:, n + 1):

This Case.

General Case.

pivot = 4 =
$$a_{kk}$$
 when zeroing the k th column. pivot row = $\begin{bmatrix} 4 & 6 & 1 & | & 4 \end{bmatrix}$ = $\mathbf{r}_k^T = a_{kj}$, $j = k+1, \ldots, n [+b_k]$ multiplier column = $\frac{1}{4} \begin{bmatrix} 8 \\ 6 \\ 4 \end{bmatrix}$ = $\mathbf{c}_k = \frac{a_{ik}}{a_{kk}}$, $i = k+1, \ldots, n$ $\mathbf{c}_k \longrightarrow \mathbf{l}_k$, store as column k of L .

kth Update Step

- Look more closely at the kth update step for Gaussian elimination.
- Assume A is $m \times n$, which covers the case where A is augmented with the right-hand side vector.
- For each row i, with i > k, we want to generate a zero in place of a_{ij} .
- We do this by subtracting a multiple of row k from row i.
- This operation can be expressed in several equivalent ways:

$$\operatorname{row}_{i} = \operatorname{row}_{i} - \frac{a_{ik}}{a_{kk}} \times \operatorname{row}_{k}$$

$$a_{ij} = a_{ij} - a_{ik} a_{kk}^{-1} a_{kj} \quad j = k+1, \dots, n$$

$$= a_{ij} - (\mathbf{c}_{k})_{i} (\mathbf{r}_{k}^{T})_{j} \quad j = k+1, \dots, n$$

$$A^{(k+1)} = A^{(k)} - \mathbf{c}_{k} \mathbf{r}_{k}^{T},$$

Matlab: lu_demo_1.m

- Here, \mathbf{c}_k is the column vector with entries $(\mathbf{c}_k)_i = a_{ik}/a_{kk}$, and \mathbf{r}_k^T is the row vector with entries $(\mathbf{r}_k^T)_j = a_{kj}$.
- Formally, we think of $(\mathbf{c}_k)_i = 0$, $i \leq k$ and $(\mathbf{r}_k^T)_j = 0$, $j \leq k$, though we would implement as an update only to the active submatrix.
- The $m \times n$ matrix $\mathbf{c}_k \mathbf{r}_k^T$ is of rank 1. All columns are multiples of the only linearly independent column, \mathbf{c}_k .
- We typically save the entries of the multiplier column as the kth column of a lower triangular matrix: $l_{ik} := (\mathbf{c}_k)_i$.

Multiplier Columns = l_k : LU = A

 $\bullet \ A^{(1)} \ := \ A, \ A^{(k+1)} \ = \ A^{(k)} \ - \mathbf{c}_k \mathbf{r}_k^T.$

$$LU = \begin{bmatrix} 1 \\ a_{21}^{(1)}/a_{11}^{(1)} & 1 \\ a_{31}^{(1)}/a_{11}^{(1)} & a_{31}^{(2)}/a_{22}^{(2)} & 1 \end{bmatrix} \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ & a_{22}^{(2)} & a_{23}^{(2)} \\ & & a_{33}^{(3)} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(2)} + \frac{a_{21}^{(1)}a_{12}^{(1)}}{a_{11}^{(1)}} & a_{23}^{(2)} + \frac{a_{21}^{(1)}a_{13}^{(1)}}{a_{11}^{(1)}} \\ a_{31}^{(1)} & etc. & etc. \end{bmatrix}$$

• Recall, for example,

$$a_{22}^{(2)} = a_{22}^{(1)} - \frac{a_{21}^{(1)} a_{12}^{(1)}}{a_{11}^{(1)}}, \text{ or}$$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)} a_{kj}^{(k)}}{a_{kk}^{(k)}}, \text{ in general.}$$

• Thus, we see that the 2-2 entry of LU is indeed $a_{22}^{(1)} = a_{22}$, etc.

Using LU Factorization in Practice

• Give LU = A, we can solve $A\mathbf{x} = \mathbf{b}$ as follows:

Given:
$$A\mathbf{x} = LU\mathbf{x} = \mathbf{b}$$

$$L(U\mathbf{x}) = L\mathbf{b} = \mathbf{b}$$
Solve: $L\mathbf{y} = \mathbf{b}$

$$U\mathbf{x} = \mathbf{y}$$

- We have seen already that the total solve cost (for L and U solves) is $2 \times n^2$.
- What about the factor cost, $A \longrightarrow LU$?

LU Factorization Costs (Important)

- In general, the cost for $A \longrightarrow LU$ is $O(n^3)$.
- It is large (i.e., it is not optimal, which would be O(n)), and therefore important.
- The dominant cost comes from the essential update step:

$$A^{(k+1)} = A^{(k)} - \mathbf{c}_k \mathbf{r}_k^T,$$

which is effected for k = 1, ..., n - 1 steps.

- If A is square $(n \times n)$, then $\mathbf{c}_k \mathbf{r}_k^T$ is a square matrix with $(n-k)^2$ nonzeros.
- Each entry requires one "*" and its subtraction from $A^{(k)}$ requires one "-".
- Total cost is $2 \times [(n-1)^2 + (n-2)^2 + \dots (1)^2] \sim 2n^3/3$ operations.
- Example: $n = 10^3 \longrightarrow n^3 = 10^9$. Cost is about 0.6 billion operations. With a 3 GHz clock and 2 floating point ops / clock, expect about 0.1 seconds (very fast).
- Example: $n = 10^4 \longrightarrow n^3 = 10^{12}$. Cost is about 600 billion operations. With a 3 GHz clock and 2 floating point ops / clock, expect about 10.0 seconds.

Final Topics

- Pivoting / zeros & stability
 - Approach
 - Permutation Matrices
 - Stability
 - Cost
- SPD / Cholesky Factorization
- Banded Factorization
 - Approach
 - Cost

Pivoting

• We return to our original 5×5 example. The next step would be:

$$\begin{bmatrix} 1 & 2 & 3 & & & 0 \\ & 4 & 4 & 6 & 1 & 4 \\ & & 0 & -3 & 0 & -4 \\ & & -5 & -6 & \frac{3}{2} & -2 \\ & & -2 & 2 & 3 & 0 \end{bmatrix}$$

- Here, we have diffiulty because the nominal pivot, a_{33} is zero.
- The remedy is to exchange rows with one of the remaining two, since the order of the equations is immaterial.
- For numerical stability, we choose the row that maximizes $|a_{ik}|$.
- This choice ensures that all entries in the multiplier column are less than one in modulus.

Next Step: k = k + 1

• After switching rows, we have

$$\begin{bmatrix} 1 & 2 & 3 & & & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & -5 & -6 & \frac{3}{2} & -2 \\ & 0 & -3 & 0 & -4 \\ & -2 & 2 & 3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & & & 0 \\ 4 & 4 & 6 & 1 & 4 \\ & & -5 & -6 & \frac{3}{2} & -2 \\ & & 0 & -3 & 0 & -4 \\ & & 0 & 4\frac{2}{5} & 2\frac{2}{5} & \frac{4}{5} \end{bmatrix}$$

$$pivot = -5$$

$$pivot row = \left[-6 \frac{3}{2} | -2 \right]$$

$$multiplier column = \frac{1}{-5} \left[\begin{array}{c} 0 \\ -2 \end{array} \right]$$

Row Interchanges

- Gaussian elimination breaks down if leading diagonal entry of remaining unreduced matrix is zero at any stage
- Easy fix: if diagonal entry in column k is zero, then interchange row k with some subsequent row having nonzero entry in column k and then proceed as usual
- If there is no nonzero on or below diagonal in column k, then there is nothing to do at this stage, so skip to next column
- ullet Zero on diagonal causes resulting upper triangular matrix $oldsymbol{U}$ to be singular, but LU factorization can still be completed
- Subsequent back-substitution will fail, however, as it should for singular matrix

Partial Pivoting

- In principle, any nonzero value will do as pivot, but in practice pivot should be chosen to minimize error propagation
- To avoid amplifying previous rounding errors when multiplying remaining portion of matrix by elementary elimination matrix, multipliers should not exceed 1 in magnitude
- This can be accomplished by choosing entry of largest magnitude on or below diagonal as pivot at each stage
- Such partial pivoting is essential in practice for numerically stable implementation of Gaussian elimination for general linear systems

LU Factorization with Partial Pivoting

- With partial pivoting, each M_k is preceded by permutation P_k to interchange rows to bring entry of largest magnitude into diagonal pivot position
- Still obtain MA = U, with U upper triangular, but now

$$M = M_{n-1}P_{n-1}\cdots M_1P_1$$

- $ullet L = M^{-1}$ is still triangular in general sense, but not necessarily *lower* triangular
- Alternatively, we can write

$$oldsymbol{P}oldsymbol{A} = oldsymbol{L}\,oldsymbol{U}$$

where $P = P_{n-1} \cdots P_1$ permutes rows of A into order determined by partial pivoting, and now L is lower triangular

Complete Pivoting

- Complete pivoting is more exhaustive strategy in which largest entry in entire remaining unreduced submatrix is permuted into diagonal pivot position
- Requires interchanging columns as well as rows, leading to factorization

$$PAQ = LU$$

- with $m{L}$ unit lower triangular, $m{U}$ upper triangular, and $m{P}$ and $m{Q}$ permutations
- Numerical stability of complete pivoting is theoretically superior, but pivot search is more expensive than for partial pivoting
- Numerical stability of partial pivoting is more than adequate in practice, so it is almost always used in solving linear systems by Gaussian elimination

Example: Permutations

- Permutation matrix P has one 1 in each row and column and zeros elsewhere, i.e., identity matrix with rows or columns permuted
- Note that $P^{-1} = P^T$

Matlab Demo: perm.m

- Premultiplying both sides of system by permutation matrix, PAx = Pb, reorders rows, but solution x is unchanged
- Postmultiplying A by permutation matrix, APx = b, reorders columns, which permutes components of original solution

$$x = (AP)^{-1}b = P^{-1}A^{-1}b = P^{T}(A^{-1}b)$$

Comments About Permutation Matrices

- □ As with A⁻¹, we never actually form them we simply use pointers to swap rows (or columns).
- □ However, they are notationally convenient, and can be constructed from elementary permutation matrices that swap just two rows, e.g. If P_{ij} is the identity matrix with rows i and j swapped, then we have:

$$P_{ij}^{-1} = P_{ij}^{T} = P_{ij}$$

So applying P_{ii} twice brings two rows back to their original position.

- We can construct a compound permutation matrix as the product of these swaps, e.g., P = P₂₁P₄₃
- The compound permutation matrix is not symmetric, but we still have

$$P^{-1} = P^{T} = P_{43}^{T} P_{21}^{T} = P_{43}^{T} P_{21}^{T}$$

perm.m

```
%% perm.m - permutation demo
   A = [1 2 3 4 ;
        2 3 4 5 ;
        3 4 5 6 ;
        4 5 6 7 ];
   p = [ 4 ; % Row 4 will go to Row 1
         1; % Row 1 will go to Row 2
         2; % Row 2 will go to Row 3
                 Row 3 will go to Row 4
         3 ];%
   I=eye(4); P = I(p,:);
   A, P
   display('Row permutation: P*A'), PA=P*A
   display('Col permutation: A*P'), AP=A*P
display('Permutation of vector:')
           = [ b P*b ];
   b1 = b(p); b2(p,1) = b;
   [ c b1 b2 ]
```

```
A =
      1
             2
      2
             3
                           5
      3
             4
                           6
             5
                           7
P =
      0
             0
                    0
                           1
             0
      1
                    0
                           0
                    0
                           0
      0
             1
             0
Row permutation: P*A
PA =
      4
             5
                    6
             2
      1
      2
             3
                    4
      3
                    5
Col permutation: A*P
AP =
             3
                           1
      3
                           2
                    5
             5
                           3
Permutation of vector:
ans =
      1
             4
                    4
                           2
      2
             1
                    1
                           3
                    2
      3
             2
                           4
             3
                    3
                           1
```

Example: Pivoting

- Need for pivoting has nothing to do with whether matrix is singular or nearly singular
- For example,

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is nonsingular yet has no LU factorization unless rows are interchanged, whereas

$$m{A} = egin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

is singular yet has LU factorization

Example: Small Pivots

To illustrate effect of small pivots, consider

$$m{A} = egin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$$

where ϵ is positive number smaller than $\epsilon_{\rm mach}$

ullet If rows are not interchanged, then pivot is ϵ and multiplier is

$$-1/\epsilon$$
, so

$$m{M} = egin{bmatrix} 1 & 0 \ -1/\epsilon & 1 \end{bmatrix}, \quad m{L} = egin{bmatrix} 1 & 0 \ 1/\epsilon & 1 \end{bmatrix},$$

$$m{U} = egin{bmatrix} \epsilon & 1 \ 0 & 1 - 1/\epsilon \end{bmatrix} = egin{bmatrix} \epsilon & 1 \ 0 & -1/\epsilon \end{bmatrix}$$

in floating-point arithmetic, but then

$$m{L} \, m{U} = egin{bmatrix} 1 & 0 \\ 1/\epsilon & 1 \end{bmatrix} egin{bmatrix} \epsilon & 1 \\ 0 & -1/\epsilon \end{bmatrix} = egin{bmatrix} \epsilon & 1 \\ 1 & 0 \end{bmatrix}
eq m{A}$$

Example, continued

- Using small pivot, and correspondingly large multiplier, has caused loss of information in transformed matrix
- If rows interchanged, then pivot is 1 and multiplier is $-\epsilon$, so

$$m{M} = egin{bmatrix} 1 & 0 \ -\epsilon & 1 \end{bmatrix}, \quad m{L} = egin{bmatrix} 1 & 0 \ \epsilon & 1 \end{bmatrix},$$

$$\boldsymbol{U} = \begin{bmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

in floating-point arithmetic

Thus,

$$m{L}m{U} = egin{bmatrix} 1 & 0 \ \epsilon & 1 \end{bmatrix} egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 1 \ \epsilon & 1 \end{bmatrix}$$

which is correct after permutation

Pivoting:

Moving small pivots down moves us closer to upper triangular form, with no round-off.

$$PA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \epsilon & 1 \end{pmatrix}$$

- □ A general principle in numerical computing regarding round-off:
 Small corrections are preferred to large ones.
- □ Failure to pivot can result in all subsequent rows looking like multiples of the kth row → singular submatrix.

Failure to pivot can result in all subsequent rows looking like multiples of the kth row:

Consider

$$A = \begin{pmatrix} \epsilon & -\underline{r}_1^T - \\ a_{21} & -\underline{r}_2^T - \\ a_{31} & -\underline{r}_3^T - \\ \vdots & -\vdots - \end{pmatrix}$$

Gaussian elimination leads to

$$\underline{r}_i \leftarrow \underline{r}_i - \frac{a_{i1}}{\epsilon}\underline{r}_1 \approx -\frac{a_{i1}}{\epsilon}\underline{r}_1.$$

Matlab example "pivot.m"

pivot_gui.m

1.0e-18	1.0000	2.0000	3.0000	4.0000
1.0000	4.0000	4.0000	6.0000	1.0000
2.0000	8.0000	7.0000	9.0000	2.0000
3.0000	6.0000	1.0000	3.0000	3.0000
4.0000	4.0000	2.0000	8.0000	4.0000

Failure to Pivot, Noncatastrophic Case

- In cases where the nominal pivot is small but $> \epsilon_M$, we simply are driving down the number of significant digits that represent the remainder of the matrix A.
- In essence, we are driving the rows (or columns) to be similar, which is equivalent to saying that we have nearly parallel columns.
- We saw already a 2 x 2 example where the condition number of the matrix with 2 unit-norm vectors scales like 2 / θ , where θ is the (small) angle between the column vectors.

Partial Pivoting: Costs

Procedure:

- For each k, pick k' such that $|a_{k'k}| \ge |a_{ik}|$, $i \ge k$.
- Swap rows k and k'.
- Proceed with central update step: $A^{(k+1)} = A^{(k)} \mathbf{c}_k \mathbf{r}_k^T$

Costs:

- For each step, search is O(n-k), total cost is $\approx n^2/2$.
- For each step, row swap is O(n-k), total cost is $\approx n^2/2$.
- Total cost for partial pivoting is $O(n^2) \ll 2n^3/3$.
- If we use full pivoting, total search cost such that $|a_{k'k''}| \ge |a_{ij}|, i, j \ge k$, is $O(n^3)$.
- Row and column exchange costs still total only $O(n^2)$.

Note: Partial (row) pivoting ensures that multiplier column entries have modulus ≤ 1 . (Good.)

Partial Pivoting: LU=PA

- \bullet Note: If we swap rows of A, we are swapping equations.
- We must swap rows of **b**.
- LU routines normally return the pivot index vector to effect this exchange.
- \bullet Nominally, it looks like a permutation matrix P, which is simply the identity matrix with rows interchanged.
- \bullet If we swap equations, we must also swap rows of L
- If we are consistent, we can swap rows at any time (i.e., A, or L) and get the same final factorization: LU = PA.
- Most codes swap $A^{(k+1)}$, but not the factors in L that have already been stored.
- Swapping rows of $A^{(k+1)}$ helps with speed (vectorization) of $A^{(k+1)} = A^{(k)} \mathbf{c}_k \mathbf{r}_k^T$.
- In parallel computing, one would *not* swap the pivot row. Just pass the pointer to the processor holding the new pivot row, where the swap would take place locally.

Pivoting, continued

- Although pivoting is generally required for stability of Gaussian elimination, pivoting is not required for some important classes of matrices
 - Diagonally dominant

$$\sum_{i=1, i \neq j}^{n} |a_{ij}| < |a_{jj}|, \quad j = 1, \dots, n$$

Symmetric positive definite

$$m{A} = m{A}^T$$
 and $m{x}^T m{A} m{x} > 0$ for all $m{x} \neq m{0}$

- The following slides present the book's derivation of the LU factorization process.
- ☐ I'll highlight a few of them that show the equivalence between the outer product approach and the elementary elimination matrix approach.

Example: Triangular Linear System

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

- Using back-substitution for this upper triangular system, last equation, $4x_3 = 8$, is solved directly to obtain $x_3 = 2$
- Next, x_3 is substituted into second equation to obtain $x_2=2$
- Finally, both x_3 and x_2 are substituted into first equation to obtain $x_1 = -1$

Elimination

- To transform general linear system into triangular form, we need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by taking linear combinations of rows
- Consider 2-vector $m{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
- If $a_1 \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ -a_2/a_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Elementary Elimination Matrices

• More generally, we can annihilate *all* entries below kth position in n-vector a by transformation

$$m{M}_{k}m{a} = egin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & 1 & 0 & \cdots & 0 \ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} egin{bmatrix} a_{1} \ dots \ a_{k} \ a_{k+1} \ dots \ a_{n} \end{bmatrix} = egin{bmatrix} a_{1} \ dots \ 0 \ dots \ 0 \ dots \ 0 \end{bmatrix}$$

where
$$m_i = a_i/a_k$$
, $i = k+1, \ldots, n$

• Divisor a_k , called *pivot*, must be nonzero

Elementary Elimination Matrices, continued

- Matrix M_k , called *elementary elimination matrix*, adds multiple of row k to each subsequent row, with *multipliers* m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$, where $m_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $m{M}_k^{-1} = m{I} + m{m}_k m{e}_k^T$, which means $m{M}_k^{-1} = : m{L}_k$ is same as $m{M}_k$ except signs of multipliers are reversed

Elementary Elimination Matrices, continued

• If M_j , j > k, is another elementary elimination matrix, with vector of multipliers m_j , then

$$egin{array}{lll} oldsymbol{M}_k oldsymbol{M}_j &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T + oldsymbol{m}_k oldsymbol{e}_k^T oldsymbol{m}_j oldsymbol{e}_j^T \ &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T \ &=& oldsymbol{I} - oldsymbol{m}_k oldsymbol{e}_k^T - oldsymbol{m}_j oldsymbol{e}_j^T \end{array}$$

which means product is essentially "union," and similarly for product of inverses, $L_k L_j$

Comment on update step and $\underline{m}_k \underline{e}^T_k$

- \square Recall, $\underline{\mathbf{v}} = \mathbf{C} \ \underline{\mathbf{w}} \in \mathrm{span}\{\mathbf{C}\}.$
- Arr Arr
- If C = c, i.e., C is a column vector and therefore of rank 1, then V is in span{C} and is of rank 1.
- ☐ All columns of V are multiples of c.
- ☐ Thus, $W = \underline{c} \underline{r}^T$ is an n x n matrix of rank 1.
 - All columns are multiples of the first column and
 - All rows are multiples of the first row.

Elementary Elimination Matrices, continued

- Matrix M_k , called *elementary elimination matrix*, adds multiple of row k to each subsequent row, with *multipliers* m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$, where $m_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $m{M}_k^{-1} = m{I} + m{m}_k m{e}_k^T$, which means $m{M}_k^{-1} = : m{L}_k$ is same as $m{M}_k$ except signs of multipliers are reversed

Example: Elementary Elimination Matrices

• For
$$a = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$$
,

$$oldsymbol{M_1a} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ -2 \end{bmatrix} = egin{bmatrix} 2 \ 0 \ 0 \end{bmatrix}$$

and

$$m{M}_2m{a} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1/2 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ -2 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 0 \end{bmatrix}$$

Note that

$$m{L}_1 = m{M}_1^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad m{L}_2 = m{M}_2^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}$$

and

$$m{M}_1m{M}_2 = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 1/2 & 1 \end{bmatrix}, \quad m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1/2 & 1 \end{bmatrix}$$

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Technically, this should be a'_{22} , the 2-2 entry in $A' := M_1A$.

 Thus, we don't know all the pivots in advance.

Gaussian Elimination, continued

Resulting upper triangular linear system

$$egin{array}{lcl} oldsymbol{M}_{n-1} \cdots oldsymbol{M}_1 oldsymbol{A} oldsymbol{x} &= oldsymbol{M} oldsymbol{b} \ oldsymbol{M} oldsymbol{A} oldsymbol{x} &= oldsymbol{M} oldsymbol{b} \end{array}$$

can be solved by back-substitution to obtain solution to original linear system $m{A}m{x}=m{b}$

Process just described is called Gaussian elimination

LU Factorization

• Product $L_k L_j$ is unit lower triangular if k < j, so

$$m{L} = m{M}^{-1} = m{M}_1^{-1} \cdots m{M}_{n-1}^{-1} = m{L}_1 \cdots m{L}_{n-1}$$

is unit lower triangular

- ullet By design, $oldsymbol{U} = oldsymbol{M} oldsymbol{A}$ is upper triangular
- So we have

$$A = LU$$

with $m{L}$ unit lower triangular and $m{U}$ upper triangular

 Thus, Gaussian elimination produces LU factorization of matrix into triangular factors

LU Factorization, continued

- Having obtained LU factorization, Ax = b becomes LUx = b, and can be solved by forward-substitution in lower triangular system Ly = b, followed by back-substitution in upper triangular system Ux = y
- ullet Note that y=Mb is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

ullet To annihilate subdiagonal entries of first column of A,

$$\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix},$$

$$m{M}_1m{b} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 8 \ 10 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix}$$

• To annihilate subdiagonal entry of second column of M_1A ,

$$M_2 M_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = U,$$

$$oldsymbol{M}_2 oldsymbol{M}_1 oldsymbol{b} = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & -1 & 1 \end{bmatrix} egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 8 \end{bmatrix} = oldsymbol{M} oldsymbol{b}$$

 We have reduced original system to equivalent upper triangular system

$$\boldsymbol{U}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \boldsymbol{M}\boldsymbol{b}$$

which can now be solved by back-substitution to obtain

$$m{x} = egin{bmatrix} -1 \ 2 \ 2 \end{bmatrix}$$

To write out LU factorization explicitly,

$$m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 1 & 1 \end{bmatrix} = m{L}$$

so that

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{L}\mathbf{U}$$

First Step: Define sub-block

Single Gaussian Elimination Step

Update step viewed as matrix-matrix product.

Note that

$$A_{k+1} = A_k - \underline{m}_k \underline{e}_k^T A_k = M_k A_k,$$

with

$$M_k := I - \underline{m}_k \underline{e}_k^T,$$

as defined in the text.

Recall:

$$MA\underline{x} = M\underline{b},$$

$$M := M_{n-1}M_{n-2}...M_1 =: L^{-1}.$$

Elementary Elimination Matrices

• More generally, we can annihilate *all* entries below kth position in n-vector a by transformation

$$m{M}_{k}m{a} = egin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & 1 & 0 & \cdots & 0 \ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \ dots & \ddots & dots & dots & \ddots & dots \ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} egin{bmatrix} a_{1} \ dots \ a_{k} \ a_{k+1} \ dots \ a_{n} \end{bmatrix} = egin{bmatrix} a_{1} \ dots \ 0 \ dots \ 0 \ dots \ 0 \end{bmatrix}$$

where
$$m_i = a_i/a_k$$
, $i = k+1, \ldots, n$

• Divisor a_k , called *pivot*, must be nonzero

Second Step: Annihilate <u>c</u>_k

Update step is:

$$A^{k+1} = \tilde{A}^{k+1} - \underline{c}_k \tilde{a}_{kk}^{-1} \underline{r}_k^T$$

which is a rank one update to A_{κ} :

$$A_{k+1} = A_k - \underline{m}_k \underline{e}_k^T A_k$$

Can also be Implemented in *Block Form*

$$A^{k+1} = \tilde{A}^{k+1} - C_k \tilde{A}_{kk}^{-1} R_k^T$$

Advantage is that, if A_{kk} is a b x b block, you revisit the A_k subblock only n/b times, and thus need fewer memory accesses.

An order-of-magnitude faster. (LAPACK vs. LINPACK)

Matlab demo, gauss2.m

- Blue curve is rank-1 update
- Red curve is rank-4 update
- Black curve is matlab lu() function
 - It uses a 4 CPUs on the Mac and achieves an impressive 50 Gflops, which is certainly near peak (or perhaps beyond?)

Uniqueness of LU Factorization

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $PA = LU = \hat{L}\hat{U}$, then $\hat{L}^{-1}L = \hat{U}U^{-1} = D$ is both lower and upper triangular, hence diagonal
- ullet If both $m{L}$ and $\hat{m{L}}$ are unit lower triangular, then $m{D}$ must be identity matrix, so $m{L}=\hat{m{L}}$ and $m{U}=\hat{m{U}}$
- Uniqueness is made explicit in LDU factorization PA = LDU, with L unit lower triangular, U unit upper triangular, and D diagonal

Storage Management

- Elementary elimination matrices M_k , their inverses L_k , and permutation matrices P_k used in formal description of LU factorization process are *not* formed explicitly in actual implementation
- U overwrites upper triangle of A, multipliers in L overwrite strict lower triangle of A, and unit diagonal of L need not be stored
- Row interchanges usually are not done explicitly; auxiliary integer vector keeps track of row order in original locations

Inversion vs. Factorization

- Even with many right-hand sides b, inversion never overcomes higher initial cost, since each matrix-vector multiplication $A^{-1}b$ requires n^2 operations, similar to cost of forward- and back-substitution
- Inversion gives less accurate answer; for example, solving 3x=18 by division gives x=18/3=6, but inversion gives $x=3^{-1}\times 18=0.333\times 18=5.99$ using 3-digit arithmetic
- Matrix inverses often occur as convenient notation in formulas, but explicit inverse is rarely required to implement such formulas
- For example, product $A^{-1}B$ should be computed by LU factorization of A, followed by forward- and back-substitutions using each column of B

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Scaling Linear Systems

- In principle, solution to linear system is unaffected by diagonal scaling of matrix and right-hand-side vector
- In practice, scaling affects both conditioning of matrix and selection of pivots in Gaussian elimination, which in turn affect numerical accuracy in finite-precision arithmetic
- It is usually best if all entries (or uncertainties in entries) of matrix have about same size
- Sometimes it may be obvious how to accomplish this by choice of measurement units for variables, but there is no foolproof method for doing so in general
- Scaling can introduce rounding errors if not done carefully

Example: Scaling

Linear system

$$\begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

has condition number $1/\epsilon$, so is ill-conditioned if ϵ is small

- If second row is multiplied by $1/\epsilon$, then system becomes perfectly well-conditioned
- Apparent ill-conditioning was due purely to poor scaling
- In general, it is usually much less obvious how to correct poor scaling

■ Sherman Morrison Formula

Triangular Systems
Gaussian Elimination
Updating Solutions
Improving Accuracy

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}(n^2)$ work, in contrast to $\mathcal{O}(n^3)$ cost of factorization

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$(A - uv^T)^{-1} = A^{-1} + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}$$

where u and v are n-vectors

• Evaluation of formula requires $\mathcal{O}(n^2)$ work (for matrix-vector multiplications) rather than $\mathcal{O}(n^3)$ work required for inversion

Rank-One Updating of Solution

• To solve linear system $(A - uv^T)x = b$ with new matrix, use Sherman-Morrison formula to obtain

$$egin{array}{lll} oldsymbol{x} &=& (oldsymbol{A} - oldsymbol{u} oldsymbol{v}^T)^{-1} oldsymbol{b} \ &=& oldsymbol{A}^{-1} oldsymbol{b} + oldsymbol{A}^{-1} oldsymbol{u} (1 - oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{u})^{-1} oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{b} \ &=& oldsymbol{A}^{-1} oldsymbol{b} + oldsymbol{A}^{-1} oldsymbol{u} (1 - oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{u})^{-1} oldsymbol{v}^T oldsymbol{A}^{-1} oldsymbol{b} \end{array}$$

which can be implemented by following steps

- ullet Solve Az=u for z, so $z=A^{-1}u$
- ullet Solve Ay=b for y, so $y=A^{-1}b$
- $\bullet \ \ \mathsf{Compute} \ \boldsymbol{x} = \boldsymbol{y} + ((\boldsymbol{v}^T\boldsymbol{y})/(1-\boldsymbol{v}^T\boldsymbol{z}))\boldsymbol{z}$
- If A is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}(n^2)$ work and no explicit inverses

Example: Rank-One Updating of Solution

Consider rank-one modification

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

(with 3, 2 entry changed) of system whose LU factorization was computed in earlier example Original Matrix

One way to choose update vectors is

noose update vectors is
$$u = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

so matrix of modified system is $oldsymbol{A} - oldsymbol{u} oldsymbol{v}^T$

• Using LU factorization of A to solve Az = u and Ay = b,

$$m{z} = egin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} \quad ext{and} \quad m{y} = egin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

Final step computes updated solution

Q: Under what circumstances could the denominator be zero?
$$x = y + \frac{v^T y}{1 - v^T z} z = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} + \frac{2}{1 - 1/2} \begin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ 0 \end{bmatrix}$$

 We have thus computed solution to modified system without factoring modified matrix

[1] Solve
$$A\underline{\tilde{x}} = \underline{\tilde{b}}$$
:
$$A \longrightarrow LU \ (O(n^3) \text{ work })$$
Solve $L\underline{\tilde{y}} = \underline{\tilde{b}}$,
Solve $U\underline{\tilde{x}} = \tilde{y} \ (O(n^2) \text{ work })$.

[2] New problem:

$$(A - \underline{u}\underline{v}^T)\underline{x} = \underline{b}$$
. (different \underline{x} and \underline{b})

Key Idea: $\left(A - \underline{u}\underline{v}^T\right)\underline{x}$ differs from $A\underline{x}$ by only a small amount of information.

Rewrite as:
$$A\underline{x} + \underline{u}\gamma = \underline{b}$$

$$\gamma := -v^T x \longleftrightarrow v^T x + \gamma = 0$$

Extended system:

$$A\underline{x} + \gamma \underline{u} = \underline{b}$$
$$\underline{v}^T \underline{x} + \gamma = 0$$

Extended system:

$$A\underline{x} + \gamma \underline{u} = \underline{b}$$
$$\underline{v}^T \underline{x} + \gamma = 0$$

$$\left[\begin{array}{cc} A & \underline{u} \\ \underline{v}^T & \mathbf{1} \end{array}\right] \left(\begin{array}{c} \underline{x} \\ \gamma \end{array}\right) = \left(\begin{array}{c} \underline{b} \\ \mathbf{0} \end{array}\right)$$

Extended system:

In matrix form:

$$A\underline{x} + \gamma \underline{u} = \underline{b}$$
$$\underline{v}^T \underline{x} + \gamma = 0$$

$$\left[\begin{array}{cc} A & \underline{u} \\ \underline{v}^T & 1 \end{array}\right] \left(\begin{array}{c} \underline{x} \\ \gamma \end{array}\right) = \left(\begin{array}{c} \underline{b} \\ 0 \end{array}\right)$$

Eliminate for γ :

$$\begin{bmatrix} A & \underline{u} \\ 0 & 1 - \underline{v}^T A^{-1} \underline{u} \end{bmatrix} \begin{pmatrix} \underline{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \underline{b} \\ -\underline{v}^T A^{-1} \underline{b} \end{pmatrix}$$

Extended system:

In matrix form:

$$A\underline{x} + \gamma \underline{u} = \underline{b}$$
$$\underline{v}^T \underline{x} + \gamma = 0$$

$$\left[\begin{array}{cc} A & \underline{u} \\ \underline{v}^T & 1 \end{array}\right] \left(\begin{array}{c} \underline{x} \\ \gamma \end{array}\right) \ = \ \left(\begin{array}{c} \underline{b} \\ 0 \end{array}\right)$$

Eliminate for γ :

$$\begin{bmatrix} A & \underline{u} \\ 0 & 1 - \underline{v}^T A^{-1} \underline{u} \end{bmatrix} \begin{pmatrix} \underline{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \underline{b} \\ -\underline{v}^T A^{-1} \underline{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \underline{v}^T A^{-1} \underline{u}\right)^{-1} \underline{v}^T A^{-1} \underline{b}$$

$$\underline{x} = A^{-1} \left(\underline{b} - \underline{u}\gamma\right) = A^{-1} \left[\underline{b} + \underline{u} \left(1 + \underline{v}^T A^{-1} \underline{u}\right)^{-1} \underline{v}^T A^{-1} \underline{b}\right]$$

Extended system:

In matrix form:

$$A\underline{x} + \gamma \underline{u} = \underline{b}$$
$$\underline{v}^T \underline{x} + \gamma = 0$$

$$\left[\begin{array}{cc} A & \underline{u} \\ \underline{v}^T & 1 \end{array}\right] \left(\begin{array}{c} \underline{x} \\ \gamma \end{array}\right) \ = \ \left(\begin{array}{c} \underline{b} \\ 0 \end{array}\right)$$

Eliminate for γ :

$$\begin{bmatrix} A & \underline{u} \\ 0 & 1 - \underline{v}^T A^{-1} \underline{u} \end{bmatrix} \begin{pmatrix} \underline{x} \\ \gamma \end{pmatrix} = \begin{pmatrix} \underline{b} \\ -\underline{v}^T A^{-1} \underline{b} \end{pmatrix}$$

$$\gamma = -\left(1 - \underline{v}^T A^{-1} \underline{u}\right)^{-1} \underline{v}^T A^{-1} \underline{b}$$

$$\underline{x} = A^{-1} \left(\underline{b} - \underline{u}\gamma\right) = A^{-1} \left[\underline{b} + \underline{u} \left(1 + \underline{v}^T A^{-1} \underline{u}\right)^{-1} \underline{v}^T A^{-1} \underline{b}\right]$$

$$\left(A - \underline{u}\underline{v}^T\right)^{-1} = A^{-1} \left(I + \underline{u} \left(1 - \underline{v}^T A^{-1} \underline{u}\right)^{-1} \underline{v}^T A^{-1}\right]$$

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
 - Symmetric: $A = A^T$, $a_{ij} = a_{ji}$ for all i, j
 - Positive definite: $x^T A x > 0$ for all $x \neq 0$
 - Band: $a_{ij} = 0$ for all $|i j| > \beta$, where β is bandwidth of A
 - Sparse: most entries of A are zero

Symmetric Positive Definite (SPD) Matrices

- Very common in optimization and physical processes
- Easiest example:
 - \square If B is invertible, then A := B^TB is SPD.
- \square SPD systems of the form A $\underline{x} = \underline{b}$ can be solved using
 - \Box (stable) Cholesky factorization $A = LL^{T_i}$ or
 - □ iteratively with the most robust iterative solver, conjugate gradient iteration (generally with preconditioning, known as preconditioned conjugate gradients, PCG).

Symmetric Positive Definite Matrices

• If A is symmetric and positive definite, then LU factorization can be arranged so that $U = L^T$, which gives Cholesky factorization

$$oldsymbol{A} = oldsymbol{L} oldsymbol{L}^T$$

where L is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L}\boldsymbol{L}^T$
- In 2×2 case, for example,

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix}$$

implies

$$l_{11} = \sqrt{a_{11}}, \quad l_{21} = a_{21}/l_{11}, \quad l_{22} = \sqrt{a_{22} - l_{21}^2}$$

Cholesky Factorization (Text)

```
Algorithm 2.7 Cholesky Factorization
    for k = 1 to n
                                                { loop over columns }
        a_{kk} = \sqrt{a_{kk}}
        for i = k + 1 to n
            a_{ik} = a_{ik}/a_{kk}
                                                { scale current column }
        end
        for j = k + 1 to n
                                                { from each remaining column,
            for i = j to n
                                                    subtract multiple
                                                    of current column }
                a_{ij} = a_{ij} - a_{ik} \cdot a_{jk}
            end
        end
   end
```

After a row scaling, this is just standard LU decomposition, exploiting symmetry in the LU factors and A. ($U=L^T$)

Cholesky Factorization

• One way to write resulting general algorithm, in which Cholesky factor L overwrites original matrix A, is

```
for j=1 to n

for k=1 to j-1

for i=j to n

a_{ij}=a_{ij}-a_{ik}\cdot a_{jk}

end

end

a_{jj}=\sqrt{a_{jj}}

for k=j+1 to n

a_{kj}=a_{kj}/a_{jj}

end

end
```


Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
 - All n square roots are of positive numbers, so algorithm is well defined
 - No pivoting is required to maintain numerical stability
 - Only lower triangle of A is accessed, and hence upper triangular portion need not be stored
 - Only $n^3/6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

Band Matrices

- Gaussian elimination for band matrices differs little from general case — only ranges of loops change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

Tridiagonal Matrices

Consider tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$

Gaussian elimination without pivoting reduces to

$$d_1 = b_1$$
 for $i = 2$ to n $m_i = a_i/d_{i-1}$ Cost is $O(n)$! $d_i = b_i - m_i c_{i-1}$

end

Tridiagonal Matrices, continued

LU factorization of A is then given by

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_2 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & m_{n-1} & 1 & 0 \\ 0 & \cdots & 0 & m_n & 1 \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} d_1 & c_1 & 0 & \cdots & 0 \\ 0 & d_2 & c_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & d_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & d_n \end{bmatrix}$$

Example of Banded Systems

☐ Graphs (i.e., matrices) arising from differential equations in 1D, 2D, 3D (and higher...) are generally banded and sparse.

■ Example:

$$-\frac{d^2u}{dx^2} = f(x) \longrightarrow -\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} \approx f_i$$

In Matrix Form

$$-\frac{d^2u}{dx^2} = f(x) \longrightarrow -\frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} \approx f_i$$

$$A_{1D} = rac{1}{h^2} \left(egin{array}{ccccc} 2 & -1 & & & & \\ -1 & 2 & -1 & & & & \\ & & -1 & \ddots & \ddots & & \\ & & & \ddots & \ddots & -1 \\ & & & & -1 & 2 \end{array}
ight) \left(egin{array}{c} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_m \end{array}
ight) = \left(egin{array}{c} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_m \end{array}
ight)$$

Banded, tridiagonal matrix ("1D Poisson Operator")

General Band Matrices

- In general, band system of bandwidth β requires $\mathcal{O}(\beta n)$ storage, and its factorization requires $\mathcal{O}(\beta^2 n)$ work
- Compared with full system, savings is substantial if $\beta \ll n$

Banded Systems

- Significant savings in storage and work if A is banded \rightarrow $a_{ij} = 0$ if $|i-j| > \beta$
- ☐ The LU factors preserve the nonzero structure of A (unless there is pivoting, in which case, the bandwidth of L can grow by at most 2x).
- □ Storage / solve costs for LU is \sim 2n β
- □ Factor cost is ~ n β ² << n ³

Definitely Do Not Invert A or L or U for Banded Systems

Solver Times, Banded, Cholesky (SPD), Full

Solver Times, Banded, Cholesky (SPD), Full

```
% Demo of banded-matrix costs
clear all;
for pass=1:2;
beta=10;
for k=4:13; n = 2^k;
   R=9*eye(n) + rand(n,n); S=R'*R; A=spalloc(n,n,1+2*beta);
   for i=1:n; j0=max(1,i-beta); j1=min(n,i+beta);
       A(i,j0:j1)=R(i,j0:j1);
   end:
   tstart=tic; [L,U]=lu(A); tsparse(k) = toc(tstart);
   tstart=tic; [L,U]=lu(R); tfull(k) = toc(tstart);
   tstart=tic; [C]=chol(S); tchol(k) = toc(tstart);
   nk(k)=n;
   sk(k) = (2*(n^3)/3)/(1.e9*tfull(k)); % GFLOPS
   ck(k) = (2*(n^3)/3)/(1.e9*tchol(k)); % GFLOPS
   [n tsparse(k) tfull(k) tchol(k)]
end:
loglog(nk,tsparse,'r.-',nk,tfull,'b.-',nk,tchol,'k.-')
axis square; title('LU time for full, banded, and SPD matrices')
```

LINPACK and LAPACK

- LINPACK is software package for solving wide variety of systems of linear equations, both general dense systems and special systems, such as symmetric or banded
- Solving linear systems of such fundamental importance in scientific computing that LINPACK has become standard benchmark for comparing performance of computers
- LAPACK is more recent replacement for LINPACK featuring higher performance on modern computer architectures, including some parallel computers
- Both LINPACK and LAPACK are available from Netlib

Basic Linear Algebra Subprograms

- High-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra Subprograms (BLAS)
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for given computer architecture while high-level routines that call them remain portable
- Higher-level BLAS encapsulate matrix-vector and matrix-matrix operations for better utilization of memory hierarchies such as cache and virtual memory with paging
- Generic Fortran versions of BLAS are available from Netlib, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	saxpy	$Scalar \times vector + vector$
		sdot	Inner product
		snrm2	Euclidean vector norm
2	$\mathcal{O}(n^2)$	sgemv	Matrix-vector product
		strsv	Triangular solution
		sger	Rank-one update
3	$\mathcal{O}(n^3)$	sgemm	Matrix-matrix product
		strsm	Multiple triang. solutions
		ssyrk	Rank- k update

 Level-3 BLAS have more opportunity for data reuse, and hence higher performance, because they perform more operations per data item than lower-level BLAS

Linear Algebra Very Short Summary

Main points:

- Conditioning of matrix cond(A) bounds our expected accuracy.
 - \blacksquare e.g., if cond(A) ~ 10⁵ we expect at most 11 significant digits in \underline{x} .
 - Why?
 - We start with IEEE double precision 16 digits. We lose 5 because condition (A) $\sim 10^5$, so we have 11 = 16-5.
- Stable algorithm (i.e., pivoting) important to realizing this bound.
 - Some systems don't need pivoting (e.g., SPD, diagonally dominant)
 - Unstable algorithms can sometimes be rescued with iterative refinement.
- Costs:
 - □ Full matrix \rightarrow O(n²) storage, O(n³) work (wall-clock time)
 - Sparse or banded matrix, substantially less.