CS 450: Numerical Analysis

Chapter 1 – Scientific Computing

Lecture 1

Numerical analysis introduction, motivation, and applications
Posedness, error, and conditioning

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

January 18, 2018
What is Numerical Analysis?

- **Numerical Problems:**

 inputs → problem → solution

 \[x \rightarrow f \rightarrow f(x) \]

- **Error Analysis:**

 quality of approximation

 \[\text{error} = f(x) - \hat{f}(x) \]

 \(\hat{f}(x) \) computed solution
Newton’s laws provide incomplete particle-centric picture

Physical systems can be described in terms of *degrees of freedom* (DoFs)

- A piston moving up and down requires \[1\] DoFs
- 1-particle system requires \[3\] DoFs
- 2-particle system requires \[6\] DoFs
- 2-particles at a fixed distance require \[5\] DoFs

\[N\]-particle system *configuration* described by \[3N\] DoFs

Scientific Computing Applications and Context

- Mathematical Modelling for Computational Science
 - physics, mechanics
 - quantum (chemistry)
 - engineering - control systems (described by a configuration)
 - biology - DNA

- Linear Algebra and Computation
 - Machine learning - numerical optimization
 - linear algebra
 - model reduction, reduced repr.
 - low-rank
 - SVD
 - Efficiency - HPC - matrix multiplication is
Sources of Error

- **Representation of Numbers:**

 - *Cannot store all digits of π (most finite memory, solution store leading digits)*

- **Propagated Data Error:**

 - We are given \(\hat{x} \approx x \), error = \(f(x) - \hat{f}(x) \)

- **Computational Error** = \(\hat{f}(x) - f(x) \) = Truncation Error + Rounding Error

 - Error of numerical method (approximation)
 - Error introduced by FLP arithmetic
Error Analysis

- **Forward Error:**

 \[
 \text{absolute } f(x) - \hat{f}(x) \approx f(x) - \hat{f}(\hat{x})
 \]

 \[
 \text{relative } \frac{\text{absolute error}}{\text{true solution}}
 \]

- **Backward Error:**

 given \(y = \hat{f}(x) \)

 \[
 y = f(x + \text{error}) \] backward stable

 if backward error is bounded by a ‘small enough’ measure
Conditioning

- **Absolute Condition Number:**
 \[k_{\text{abs}} = \frac{\text{perturbation in output}}{\text{perturbation in input}} \]
 where \(\min_{\text{over inputs}} \max_{\text{perturbation in input}} \).

- **(Relative) Condition Number:**
 \[1 \left(\frac{f(x + \delta x) - f(x)}{f(x)} \right) \]
 with \(\delta x \).
Posedness and Conditioning

What is the condition number of an ill-posed problem?

\[\kappa = \infty \]

Relative condition number

\[\kappa_{\text{abs}} - \text{absolute cond.} \]
Stability and Accuracy

- **Accuracy:**

 how close to solution is the computed answer

- **Stability:**

 how sensitive computed solution is to perturbations in input