CS 450: Numerical Anlaysis

Lecture 6
Chapter 3 - Linear Least Squares
QR Factorization

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

February 2, 2018

Linear Least Squares $\quad x^{*}=\arg _{x}^{\min } f(x) \mid \min _{x} f(x)=f\left(x^{0}\right)$

- Finn $\left.x^{x}\right)=\operatorname{argmin}_{x \in \mathbb{R}^{n}}\|A x-b\|_{2}$ where $A \in \mathbb{R}^{m \times n}$:

$$
1 \cong \square 1 \quad x^{\sim} \approx \underset{x}{\operatorname{argmin}}\left\|A_{>}-b\right\|_{2}^{2}=\operatorname{argmin}\left\langle A_{x}-b, A_{>}-b\right)
$$

- Given the reduced SVD $A=U \Sigma V^{T}$ we have $\boldsymbol{x}^{\star}=V \Sigma^{-1} U^{-1} b:$

Linear Least Squares

- Find $\boldsymbol{x}^{\star}=\operatorname{argmin}_{\boldsymbol{x} \in \mathbb{R}^{n}}\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}$ where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$:

Normal Equations

- Normal equations are given by solving $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}^{\star}=\boldsymbol{A} \boldsymbol{\boldsymbol { b }}$:

$$
\begin{aligned}
& \left(u \varepsilon v^{\top}\right)^{\top}\left(u \varepsilon v^{\top}\right) x^{*}=\left(u \varepsilon V^{\top}\right)^{\top} \\
& \text { VS } y^{*} u \varepsilon v^{\top} x^{*}=\forall \& G^{\top} b \quad \Rightarrow x^{*}=V \varepsilon^{-1} u^{\top} b
\end{aligned}
$$

- However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

$$
B=\underbrace{+{ }^{+} A} \text {-symmetric }
$$

- positive definite, eigenushuq oof B $B x=y$ car be solved by $B=\angle L^{T}$ ringster values of A

QR Factorization

- If \boldsymbol{A} is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $\boldsymbol{A}=\boldsymbol{Q R}$

$$
\left.A=\begin{array}{lr|l}
Q_{Q} & A x=b & x=R^{-1} Q^{\top} b \\
\text { orthogonal. } & & Q R_{x}=b
\end{array} \right\rvert\, \begin{array}{ll}
& R x=Q^{\top} b
\end{array}
$$

- A reduced $Q R$ factorization (unique part of general $Q R$) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular

$$
\square=|a| \sqrt{\square} \left\lvert\, \begin{array}{ll}
\frac{A x \cong b}{} & R x=Q^{\top} b \\
n \xi\left[\begin{array}{l}
1 \\
0
\end{array}\right] & x=|a|
\end{array}\right.
$$

Gram-Schmidt Orthogonalization

- Classical Gram-Schmidt process for QR:
$\pm A \rightarrow Q\}$ arthonormal cols.
$\operatorname{span}(A)=\operatorname{spcn}(R)$
let $a:$ be ith colunn of A
Modifiéd GIam-Schmidt process for QR: $\quad q_{1}=\frac{a_{1}}{\| a_{1}, 1}, q_{2}=a_{2}-a_{2}\left\langle\frac{a_{1}, a_{2}}{\left\langle a_{1}, q_{2}\right\rangle}\right.$

$$
A=\mathbb{Q} \nabla
$$

$$
\left\|a_{1}\right\|>q_{3}=a_{3}-a_{3} \frac{\left\langle a_{1}, a_{\rangle}\right\rangle}{\left\langle a_{1}, c_{i}\right\rangle}-\frac{a_{2}}{\langle \rangle}
$$

$a_{1}=q_{1}\left\|a_{1}\right\|$

$$
\begin{aligned}
& q_{1}=\frac{a_{1}}{\| a_{1}, 1}, q_{2}=a_{2}-a_{2}\left\langle a_{1}, a_{2}\right\rangle \\
& q_{3}=\frac{a_{3}-a_{3}}{\left\langle a_{1}, a_{1}, a_{7}\right\rangle} \\
& \left\langle a_{1}, c_{7}\right\rangle
\end{aligned}-\frac{a_{2}}{\left\langle\frac{\nu}{\langle \rangle}\right.}
$$

$$
\begin{gathered}
a_{2}=q_{1} \cdots+q_{2} \cdots \\
a_{3}=a_{1} \\
q_{2}
\end{gathered}
$$

Householder QR Factorization

- A Householder transformation $Q=\boldsymbol{I}-2 \boldsymbol{u} u^{T}$ is an orthogonal matrix defined to annihilate entries ot a given vector z, so $\|z\|_{2} Q e_{1}=z$:

$$
\begin{aligned}
& Q\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right]=\left[\begin{array}{c}
\mu_{2} \|_{1}^{0} \\
\vdots \\
0 \\
j
\end{array}=Q z=\|_{2} e,\right. \\
& z=Q\|z\|_{2} e, \\
& Q R=Q_{1} \ldots Q_{n} R
\end{aligned}
$$

Computing Householder Transformations

- To find a Householder transformation that annihilates a given vector z, compute $\boldsymbol{u}=\frac{z \pm\|z\|_{2} e_{1}}{\|z \pm\| z\left\|_{2} e_{1}\right\|_{2}}$
- Householder transformations can be aggregated in the form $\boldsymbol{I}-\boldsymbol{Y T} \boldsymbol{T} \boldsymbol{Y}^{T}$ where \boldsymbol{Y} is lower-trapezoidal and \boldsymbol{T} is upper-triangular

Applying Householder Transformations

- The product $\boldsymbol{Q} \boldsymbol{w}$ can be computed using $O(n)$ operations if \boldsymbol{Q} is a Householder transformation
- Householder transformations are also called reflectors because their application reflects a vector along a hyperplane (changes sign of component of \boldsymbol{w} that is parallel to \boldsymbol{u})

