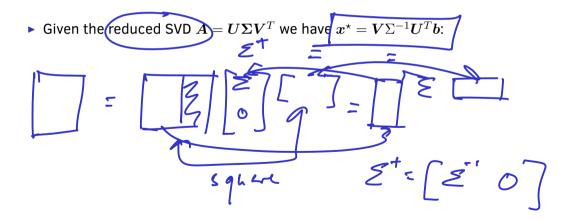

CS 450: Numerical Anlaysis Lecture 6 Chapter 3 – Linear Least Squares QR Factorization

.

Edgar Solomonik


Department of Computer Science University of Illinois at Urbana-Champaign

February 2, 2018



#### Linear Least Squares

▶ Find  $x^{\star} = \operatorname{argmin}_{x \in \mathbb{R}^n} ||Ax - b||_2$  where  $A \in \mathbb{R}^{m \times n}$ :



### **Normal Equations**

• Normal equations are given by solving  $A^T A x^* = A b$ :

$$(uzv^{T})^{T}(uzv^{T}) \star^{*} = (uzv^{T})^{T}$$

$$\chi \not\leq u^{T} u \leq v^{T} \star^{*} = \chi \not\leq u^{T} b \implies \star^{*} = V \varepsilon^{T} u^{T}$$

 However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

# **QR** Factorization

If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that A = QR

▶ A reduced QR factorization (unique part of general QR) is defined so that  $Q \in \mathbb{R}^{m \times n}$  has orthonormal columns and R is square and upper-triangular

## Gram-Schmidt Orthogonalization

Classical Gram-Schmidt process for QR:

### Householder QR Factorization

• A Householder transformation  $Q = I - 2uu^T$  is an orthogonal matrix defined to annihilate entries of a given vector z, so  $||z||_2Qe_1 = z$ :

$$Q\begin{bmatrix}z,\\ \vdots\\ z_{h}\end{bmatrix} = \begin{bmatrix} nz \\ \vdots\\ 0 \end{bmatrix} = Qz = lage,$$
$$z = Q ||z||_{2} e$$

 $QR = Q_{1} \dots Q_{n} R$ 

## **Computing Householder Transformations**

• To find a Householder transformation that annihilates a given vector z, compute  $u = \frac{z \pm ||z||_2 e_1}{||z \pm ||z||_2 e_1||_2}$ 

• Householder transformations can be *aggregated* in the form  $I - YTY^T$  where Y is lower-trapezoidal and T is upper-triangular

# Applying Householder Transformations

► The product *Qw* can be computed using *O*(*n*) operations if *Q* is a Householder transformation

Householder transformations are also called *reflectors* because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)