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Linear Least Squares

� Find x� = argminx∈Rn ||Ax− b||2 where A ∈ Rm×n:

� Given the reduced SVD A = UΣV T we have x� = V Σ−1UTb:
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Normal Equations
� Normal equations are given by solving ATAx� = Ab:

� However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm



QR Factorization
� If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A = QR

� A reduced QR factorization (unique part of general QR) is defined so that
Q ∈ Rm×n has orthonormal columns and R is square and upper-triangular



Gram-Schmidt Orthogonalization
� Classical Gram-Schmidt process for QR:

� Modified Gram-Schmidt process for QR:



Householder QR Factorization
� A Householder transformationQ = I − 2uuT is an orthogonal matrix

defined to annihilate entries of a given vector z, so ||z||2Qe1 = z:



Computing Householder Transformations
� To find a Householder transformation that annihilates a given vector z,

compute u = z±||z||2e1
||z±||z||2e1||2

� Householder transformations can be aggregated in the form I − Y TY T

where Y is lower-trapezoidal and T is upper-triangular



Applying Householder Transformations
� The product Qw can be computed using O(n) operations if Q is a

Householder transformation

� Householder transformations are also called reflectors because their
application reflects a vector along a hyperplane (changes sign of component
of w that is parallel to u)


