CS 450: Numerical Analysis
Lecture 19
Chapter 7 Interpolation
Basics of Interpolation

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

March 28, 2018
Interpolation

- Given \((t_1, y_1), \ldots, (t_m, y_m)\) with \(t_1 < \cdots < t_m\) an **interpolant** \(f\) satisfies:

 \[
 f(t_i) = y_i \quad \forall i.
 \]

- The interpolant is not unique.

- Error of interpolant can be quantified with knowledge of true function.

- Interpolant is usually constructed as linear combinations of **basis functions** \(\{\phi_j\}_{j=1}^n = \phi_1, \ldots, \phi_n\) so \(f(t) = \sum_j x_j \phi_j(t)\).

 - Interpolant usually doesn’t exist if \(n < m\), exists and is unique if \(n = m\), and is non-unique if \(n > m\).
 - Define \(A = V(t, \{\phi_j\}_{j=1}^n)\) so that \(a_{ij} = \phi_j(t_i)\), then \(Ax = y\).
 - Interpolant can be formed by solving linear system with \(A\) and \(y\).
 - Interpolant can be evaluated at \(t'\) by computing \(B = V(t', \{\phi_j\}_{j=1}^n)\) then \(y' = Bx\).
The choice of monomials as basis functions, \(\phi_j(t) = t^{j-1} \) yields a degree \(n - 1 \) polynomial interpolant:

- Polynomial interpolants yield Vandermonde systems \(A = V(t, \{\phi_j\}_{j=1}^n) \) with \(a_{ij} = t_i^{j-1} \).

- Polynomial interpolants are easy to evaluate and do calculus on:

 \[
 f(t) = x_1 + t(x_2 + t(x_3 + \ldots))
 \]

- Differentiation and integration require \(n \) products.

- Horner’s rule for evaluation requires \(n \) products and \(n \) additions.
Conditioning of Interpolation

- Conditioning of interpolation matrix A depends on basis functions and coordinates t_1, \ldots, t_m:
 - t_i defines the ith column, so columns tend to be nearly linearly-dependent if $t_i \approx t_{i+1}$
 - ϕ_j defines the jth row, so rows tend to be nearly linearly-dependent if $\phi_j \in \text{span}(\{\phi_i\}_{i=1,i\neq j}^n)$

- The Vandermonde matrix tends to be ill-conditioned:
 - Monomials of increasing degree increasingly resemble one-another, so rows of A become nearly the same (see demos).
 - The conditioning can be improved somewhat by shifting and scaling points so that each $t_i \in [-1, 1]$.
Lagrange Basis

- n-points fully define the unique $(n - 1)$-degree polynomial interpolant in the Lagrange basis:

$$
\phi_j(t) = \frac{\prod_{k=1, k\neq j}^{n} (t - t_k)}{\prod_{k=1, k\neq j}^{n} (t_j - t_k)}
$$

Note that \textbf{num} is 0 whenever $t = t_k$ for some k, while \textbf{den} is never 0, and when $t = t_j$ then \textbf{num} and \textbf{den} are the same, so $\phi_j(t_j) = 1$. Consequently, the resulting interpolant system $V(t, \{\phi_j\}_{j=1}^{n})$ is diagonal.

- Lagrange polynomials yield a convenient Vandermonde system, but the basis functions are hard to evaluate and do calculus on:
 - Evaluation requires $O(n^2)$ work naively and may incur cancellation error.
 - Differentiation and integration are also harder than with monomials.
The Newton basis functions $\phi_j(t) = \prod_{k=1}^{j-1}(t - t_k)$ seek the best of monomial and Lagrange bases:

- Monomials basis functions enable fast evaluation.
- Lagrange basis functions yield a Vandermonde system that's easy to solve.

The Newton basis yields a triangular Vandermonde system:

Note that $a_{ij} = \phi_j(t_i) = 0$ for all $i < j$, so A is lower-triangular. Thus it suffices to use back-substitution to obtain the solution in $O(n^2)$ work.
Recurrences for Newton Basis

- The Newton basis functions \(\phi_j(t) = \prod_{k=1}^{j-1} (t - t_k) \) can be evaluated at \(t \) with \(O(n) \) work using a simple recurrence:

\[
\phi_j(t) = \phi_{j-1}(t)(t - t_j)
\]

- A recurrence known as the divided-differences formula gives a stable way of efficiently computing the coefficients \(x \):

\[
x_i = l_{i1} \quad \text{where} \quad l_{ij} = \frac{l_{i,j+1} - l_{i-1,j}}{t_i - t_j} \quad \text{for} \quad i > j \quad \text{and} \quad l_{ii} = y_i
\]

Matching standard notation we have \(x_i = l_{i1} = f[t_1, \ldots, t_i] \) and generally \(l_{ij} = f[t_j, \ldots, t_i] \). This recurrence also implies that the Newton coefficients can be constructed incrementally by appending new rows to the bottom of \(L \).
Orthogonal Polynomials

Recall that good conditioning for interpolation is achieved by constructing a well-conditioned Vandermonde matrix, which is the case when the columns (corresponding to each basis function) are orthonormal. To construct robust basis sets, we introduce a notion of *orthonormal functions*:

To compute overlap between basis functions, use a w-weighted integral as inner product,

$$\langle p, q \rangle_w = \int_{-\infty}^{\infty} p(t)q(t)w(t)dt$$

Orthonormality is then defined in the usual way, $\{\phi_i\}_{i=1}^{n}$ are orthonormal with respect to the above inner product if

$$\langle \phi_i, \phi_j \rangle_w = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

The corresponding norm is given by $||f|| = \sqrt{\langle f, f \rangle_w}$.
The Gram-Schmidt orthogonalization procedure can be used to obtain an orthonormal basis with the same span as any given arbitrary basis:

Given orthonormal functions \(\{ \hat{\phi}_i \}_{i=1}^{k-1} \) *obtain* \(k \)th function from \(\phi_k \) via

\[
\hat{\phi}_k(t) = \frac{\psi_k(t)}{||\psi_k||}, \quad \psi_k(t) = \phi_k(t) - \sum_{i=1}^{k-1} \langle \phi_k(t), \hat{\phi}_k(t) \rangle w \hat{\phi}_k(t)
\]

The Legendre polynomials are obtained by Gram-Schmidt on the monomial basis, with normalization done so \(\hat{\phi}_i(1) = 1 \) and \(w(t) = \begin{cases} 1 : -1 \leq t \leq 1 \\ 0 : \text{otherwise} \end{cases} \)

For example, \(\{ \hat{\phi}_i(t) \}_{i=1}^{3} = \{ 1, t, (3t^2 - 1)/2 \} \) since

\[
\psi_1(t) = 1, \quad \psi_2(t) = t - \frac{1}{2} \int_{-1}^{1} t \, dt = t
\]

\[
\psi_3(t) = t^2 - \frac{1}{2} \int_{-1}^{1} t^2 \, dt - t \int_{-1}^{1} t^3 \, dt = t^2 - 1/3
\]