
CS 450: Numerical Anlaysis
Lecture 27

Chapter 11 Partial Di�erential Equations
Numerical Methods for Partial Di�erential Equations

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

April 25, 2018



Partial Di�erential Equations
I Partial di�erential equations (PDEs) are equations describe physical laws

and other continuous phenomena:
I They contain partial derivatives in multiple variables.
I Examples include: electromagnetism, fluid flow, quantum mechanics, and

general relativity.

I A simple PDE is the advection equation, which describes basic phenomena in
fluid flow:

ut = −a(t, x)ux

where ut = ∂u/∂t and ux = ∂u/∂x. Generally, we impose an initial condition
with respect to t, i.e., u(0, x) = u0(x). When a(t, x) = c this is the Cauchy
problem with solution

u(t, x) = u0(x− ct).



Properties of PDEs
I A characteristic of a PDE is a level curve in the solution:

For the Cauchy form of the advection equation, a characteristic x(t) satisfies
u(t, x(t)) = const. One of their uses is identifying where boundary conditions
must be satisfied, e.g. for the Cauchy equation, it tells us whether boundary
conditions are needed on the left or the right (in terms of x) of the domain.
More generally, characteristic curves describe curves in the solution field
u(t, x) that correspond to ODEs e.g. for the advection equation,

∂x(t)

∂t
= a(t, x(t)) with initial condition x(0) = x0.

I The order of a PDE is the highest-order of any partial derivative appearing in
the PDE:
The advection equation is a first order ODE. ODEs containing e.g. uxy or utt
are second order.



Types of PDEs
I Some of the most important PDEs are second order:

I Heat equation (di�usion), ut = uxx
I Wave equation (oscillation), utt = uxx
I Laplace equation (steady-state), uxx + uyy = 0

Any PDE of the form

auxx + buxy + cuyy + dux + euy + fu+ g = 0

behaves (has the character) of one of the above equations.
I The discriminant determines the canonical form of second-order PDEs:

The discriminant is r = b2 − 4ac and linear PDEs are classified as
r > 0 : hyperbolic, wave-equation-like
r = 0 : parabolic, heat-equation-like
r < 0 : elliptic, Laplace-equation-like

When coe�cients are varying, a PDE may exhibit di�erent behavior in
di�erent parts of the domain.



Method of Lines
I Semidiscrete methods obtain an approximation to the PDE by solving a

system of ODEs, e.g. consider heat equation

ut = cuxx on 0 ≤ x ≤ 1, u(0, x) = f(x), u(t, 0) = u(t, 1) = 0

We discretize over x and use finite di�erences to approximate

uxx ≈
u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

(∆x)2
.

This approximation yields a system of ODEs

y′i(t) =
c

(∆x)2

(
yi+1(t)− 2yi(t) + yi−1(t)

)
which we can write as y′(t) = Ay(t), where A is tridiagonal.

I This method of lines often yields a sti� ODE:
The eigenvalues of A range from near 0 to −4c/(∆x)2, which means the ODE
is sti� for small ∆x. Intuitively, strong concentrations of heat dissipate very
rapidly, while overall heat dissipates slowly.



Semidiscrete Collocation
I Instead of finite-di�erences, we can express u(t, x) in a spatial basis:

u(t, x) ≈ v(t, x,α(t)) =

n∑
j=1

αjφj(x)

Collocation methods then ensure the approximation is exact on x1, . . . , xn,
yielding matrix equations.

I For the heat equation ut = cuxx, we obtain an ODE:

n∑
j=1

∂αj

∂t
(t)φj(xi)︸ ︷︷ ︸

mij

= c

n∑
j=1

αj(t)
∂2φj
∂x2

(xi)︸ ︷︷ ︸
nij

written in matrix form,
α′(t) = cM−1Nα(t)



Fully Discrete Methods

I Generally, both time and space dimensions are discretized, for example
using finite di�erences:
Lets again consider the heat equation ut = cuxx and discretize so that
u
(k)
i ≈ u(tk, xi),

u
(k+1)
i − u(k)i

∆t
= c

u
(k)
i+1 − 2u

(k)
i + u

(k)
i−1

(∆x)2

which yields an iterative scheme defined by 3-pt stencil

u
(k+1)
i = u

(k)
i + c∆t

u
(k)
i+1 − 2u

(k)
i + u

(k)
i−1

(∆x)2
.

The same scheme can be derived by applying Euler’s method to the ODE given
by the method of lines.



Implicit Fully Discrete Methods
I When using Euler’s method for the heat equation, to stay in stability region,

require
∆t = O

(
(∆x)2

)
Step-size restriction on stability can be circumvented by use of implicit
time-stepper, such as backward Euler,

u
(k+1)
i = u

(k)
i + c∆t

u
(k+1)
i+1 − 2u

(k+1)
i + u

(k+1)
i−1

(∆x)2
.

This scheme requires for a tridiagonal matrix system to be solved at each
time-step, but obtains unconditional stability, albeit only first-order accuracy.
Using the trapezoid method to solve the ODE we obtain the second-order
Crank-Nicolson method,

u
(k+1)
i = u

(k)
i + c∆t

u
(k+1)
i+1 − 2u

(k+1)
i + u

(k+1)
i−1 + u

(k)
i+1 − 2u

(k)
i + u

(k)
i−1

2(∆x)2
.



Convergence and Stability

I Lax Equivalence Theorem: consistency + stability = convergence
Consistency means that the local truncation error goes to zero, and is easy to
verify by Taylor expansions. Stability implies that the approximate solution at
any time t must remain bounded. Together these conditions are necessary
and su�cient for convergence.

I Stability can be ascertained by spectral or Fourier analysis:
In the method of lines, we saw that the eigenvalues of the resulting ODE
define the stability region. Fourier analysis decomposes the solution into a
sum of harmonic functions and considers the behavior of their amplitude.



CFL Condition

I The domain of dependence of a PDE for a given point (t, x) is the portion of
the problem domain influencing this point through the PDE:
Generally determined by characteristics of PDE. For a stencil method,
depends on the set of mesh-points influencing the mesh point at (t, x).

I The Courant, Friedrichs, and Lewy (CFL) condition states that a necessary
condition for an explicit finite-di�erencing scheme to be stable for a
hyperbolic PDE is that the domain of the dependence of the PDE be
contained in the domain of dependence of the scheme:
Intuitively, we can then achieve stability by choosing a su�ciently large grid
spacing h, or including more mesh points in our stencil.



Time-Independent PDEs

I We now turn our focus to time-independent PDEs as exemplified by the
Helmholtz equation:

uxx + uyy + λu = f(x, y)

I λ = 0 yields the Poisson equation
I λ = 0 and f = 0 yields the Laplace equation
I Boundary conditions (e.g. Dirichlet or Neumann or mixed) on surface of domain

I We discretize as before, but no longer perform time stepping:
For example given a domain [0, 1]2, we can tile it using n× n mesh points, and
setup finite-di�erence equations or boundary-condition equations at each
point.



Finite-Di�erencing for Poisson
I Consider the Poisson equation with equispaced mesh-points on [0, 1]:

If u is a vector containing the mesh-points, we have that

Dxu+Dyu = b where bi = f(ui)

where Dx and Dy are finite-di�erence operators along x and y dimensions,
respectively. Given a di�erencing matrix D (e.g. tridiagonal with 1,−2, 1), we
obtain the matrix equation,

(I ⊗D +D ⊗ I)u = b

where the Kronecker product is defined as

C = A⊗B =


a11B a12B · · ·

a21B
. . .

...

 ,
and the elements of b contain the mesh elements in column-major (or
row-major in this example) order.



Multidimensional Finite Elements
I There are many ways to define localized basis functions, for example in the

2D FEM method1:

We partition the domain into triangles (elements) and define linear basis
functions that are 1 at the intersection of three or more elements (nodes).

1Source: Comsol Multiphysics Cyclopedia https://www.comsol.com/multiphysics/finite-element-method

https://www.comsol.com/multiphysics/finite-element-method

