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Stochastic Simulation and Randomness

Stochastic Simulation

@ Stochastic simulation mimics or replicates behavior of
system by exploiting randomness to obtain statistical
sample of possible outcomes

@ Because of randomness involved, simulation methods are
also known as Monte Carlo methods

@ Such methods are useful for studying
e Nondeterministic (stochastic) processes

e Deterministic systems that are too complicated to model
analytically

e Deterministic problems whose high dimensionality makes
standard discretizations infeasible (e.g., Monte Carlo
integration)

< interactive example > < interactive example > T
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http://www.cs.illinois.edu/~heath/iem/integration/mntcurve/
http://www.cs.illinois.edu/~heath/iem/integration/mntcirc/

Stochastic Simulation and Randomness

Stochastic Simulation, continued

@ Two main requirements for using stochastic simulation
methods are
e Knowledge of relevant probability distributions
e Supply of random numbers for making random choices

@ Knowledge of relevant probability distributions depends on
theoretical or empirical information about physical system
being simulated

@ By simulating large number of trials, probability distribution
of overall results can be approximated, with accuracy
attained increasing with number of trials

< interactive example > < interactive example >
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http://www.cs.illinois.edu/~heath/iem/random/bfnneedl/
http://www.cs.illinois.edu/~heath/iem/random/walklplc/

Stochastic Simulation and Randomness

Randomness

@ Randomness is somewhat difficult to define, but we
usually associate randomness with unpredictability

@ One definition is that sequence of numbers is random if it
has no shorter description than itself

@ Physical processes, such as flipping coin or tossing dice,
are deterministic if enough is known about equations
governing their motion and appropriate initial conditions

@ Even for deterministic systems, extreme sensitivity to initial
conditions can make their chaotic behavior unpredictable
in practice

@ Wheter deterministic or not, highly complicated systems
are often tractable only by stochastic simulation methods 1
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Stochastic Simulation and Randomness

Repeatability

@ In addition to unpredictability, another distinguishing
characteristic of true randomness is lack of repeatability

@ However, lack of repeatability could make testing
algorithms or debugging computer programs difficult, if not
impossible

@ Repeatability is desirable in this sense, but care must
taken to ensure independence among trials
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Random Number Generators

Pseudorandom Numbers

@ Although random numbers were once supplied by physical
processes or tables, they are now produced by computers

@ Computer algorithms for generating random numbers are
in fact deterministic, although sequence generated may
appear random in that it exhibits no apparent pattern

@ Such sequences of numbers are more accurately called
pseudorandom

@ Although pseudorandom sequence may appear random, it
is in fact quite predictable and reproducible, which is
important for debugging and verifying results

@ Because only finite number of numbers can be represented
in computer, any sequence must eventually repeat 1
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Random Number Generators

Random Number Generators

Properties of good random number generator as possible
@ Random pattern: passes statistical tests of randomness
@ Long period: goes as long as possible before repeating
@ Efficiency: executes rapidly and requires little storage

@ Repeatability . produces same sequence if started with
same initial conditions

@ Portability : runs on different kinds of computers and is
capable of producing same sequence on each
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Random Number Generators

Random Number Generators, continued

@ Early attempts at producing random number generators on
computers often relied on complicated procedures whose
very complexity was presumed to ensure randomness

@ Example is “midsquare” method, which squares each
member of sequence and takes middle portion of result as
next member of sequence

@ Lack of theoretical understanding of such methods proved
disastrous, and it was soon recognized that simple
methods with well-understood theoretical basis are far
preferable
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Random Number Generators

Congruential Generators

@ Congruential random number generators have form
xp, = (axg—1 + ¢) (mod M)
where a and c are given integers
@ Starting integer x is called seed

@ Integer M is approximately (often equal to) largest integer
representable on machine

@ Quality of such generator depends on choices of a and ¢,
and in any case its period cannot exceed M
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Random Number Generators

Congruential Generators, continued

@ ltis possible to obtain reasonably good random number
generator using this method, but values of ¢ and ¢ must be
chosen very carefully

@ Random number generators supplied with many computer
systems are of congruential type, and some are
notoriously poor

@ Congruential generator produces random integers
between 0 and M

@ To produce random floating-point numbers, say uniformly
distributed on interval [0, 1), random integers must be
divided by M (not integer division!)

< interactive example > T

Michael T. Heath Scientific Computing


http://www.cs.illinois.edu/~heath/iem/random/pairplot/

Random Number Generators

Fibonacci Generators

@ Fibonacci generators produce floating-point random
numbers on interval [0, 1) directly as difference, sum, or
product of previous values

@ Typical example is subtractive generator
Tk = Tk—17 — Tk—5
@ This generator is said to have lags of 17 and 5

@ Lags must be chosen carefully to produce good subtractive
generator

@ Such formula may produce negative result, in which case
remedy is to add 1 to get back into interval [0, 1) 1

Michael T. Heath Scientific Computing



Random Number Generators

Fibonacci Generators, continued

@ Fibonacci generators require more storage than
congruential generator, and also require special procedure
to get started

@ Fibonacci generators require no division to produce
floating-point results

@ Well-designed Fibonacci generators have very good
statistical properties

@ Fibonacci generators can have much longer period than
congruential generators, since repetition of one member of
sequence does not entail that all subsequent members will

also repeat in same order 1
]

Michael T. Heath Scientific Computing



Random Number Generators

Sampling on Other Intervals

@ If we need uniform distribution on some other interval [a, b),
then we can modify values z;, generated on [0, 1) by
transformation

(b—a)zr+a
to obtain random numbers that are uniformly distributed on
desired interval
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Random Number Generators

Nonuniform Distributions

@ Sampling from nonuniform distributions is more difficult

@ If cumulative distribution function of desired probability
density function is easily invertible, then we can generate
random samples with desired distribution by generating
uniform random numbers and inverting them

@ For example, to sample from exponential distribution
f@)=xe ™, t>0
we can take
xp = —log(l —yi)/A
where y;, is uniform on [0, 1)

@ Unfortunately, many important distributions are not easily
invertible, and special methods must be employed to ._
generate random numbers efficiently for these distributions 1
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Random Number Generators

Normal Distribution

@ Important example is generation of random numbers that
are normally distributed with given mean and variance

@ Available routines often assume mean 0 and variance 1

@ If some other mean p and variance o2 are desired, then
each value z; produced by routine can be modified by
transformation oz + u to achieve desired normal
distribution
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Quasi-Random Sequences

Quasi-Random Sequences

@ For some applications, achieving reasonably uniform
coverage of sampled volume can be more important than
whether sample points are truly random

@ Truly random sequences tend to exhibit random clumping,
leading to uneven coverage of sampled volume for given
number of points

@ Perfectly uniform coverage can be achieved by using
regular grid of sample points, but this approach does not
scale well to higher dimensions

@ Compromise between these extremes of coverage and

randomness is provided by quasi-random sequences 1
1
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Quasi-Random Sequences

Quasi-Random Sequences, continued

@ Quasi-random sequences are not random at all, but are
carefully constructed to give uniform coverage of sampled
volume while maintaining reasonably random appearance

@ By design, points tend to avoid each other, so clumping
associated with true randomness is eliminated

Grid Random Quasi-random

< interactive example > T
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http://www.cs.illinois.edu/~heath/iem/random/quasirnd/
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