
CS 450: Numerical Anlaysis
Chapter 1 – Scientific Computing

Lecture 1
Numerical analysis introduction, motivation, and applications

Posedness, error, and conditioning

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

January 18, 2018

What is Numerical Analysis?
I Numerical Problems:

Given input x ∈ Rn, approximate output y = f(x)
I Problem is well-posed if f is a smoothly varying function, f(x̂)→ f(x) as x̂→ x.
I Otherwise, problem is ill-posed

I Error Analysis:
Quality of approximation is quantified by distance to the solution

I If solution y = f(x) is a scalar, distance from computed solution ŷ to correct
answer is the absolute error

|∆y| = |ŷ − y|,
while the normalized distance is the relative error

|∆y|/|y| = |ŷ − y|/|y|

I More generally, we are interested in the error

∆y = ŷ − y

the magnitude of which is measured by a given vector norm

Example: Mechanics1

I Newton’s laws provide incomplete particle-centric picture

I Physical systems can be described in terms of degrees of freedom (DoFs)
I A piston moving up and down requires 1 DoFs
I 1-particle system requires 3 DoFs
I 2-particle system requires 6 DoFs
I 2-particles at a fixed distance require 5 DoFs

I N-particle system configuration described by 3N DoFs

I Trajectories in configuration space (R3N) describe free energy configuration
I Various choice of basis functions (i.e. coordinate system) for configuration

space are possible

1Variational Principles of Mechanics, Cornelius Lanczos, Dover Books on Physics, 1949.

Scientific Computing Applications and Context

I Mathematical Modelling for Computational Science
Typical scientific computing problems are numerical solutions to PDEs

I Newtonian dynamics: simulating particle systems in time
I Fluid and air flow models for engineering
I PDE-constrained numerical optimization: finding optimal configurations (used in

engineering of control systems)
I Quantum chemistry (electronic structure calculations): many-electron

Schrödinger equation

I Linear Algebra and Computation
I Linear algebra and numerical optimization are building blocks for machine

learning methods
I Computer architecture, compilers, and parallel computing use numerical

algorithms (matrix multiplication, Gaussian elimination) as benchmarks

Sources of Error
I Representation of Numbers:

I We cannot represent arbitrary real numbers in a finite amount of space, e.g. a
computer cannot exactly represent π

I Moreover, hardware architectures are only well-fit to work with fixed-length
(32-bit or 64-bit) representations

I As we will see, the best we can do is represent a wide range of numbers with a
relatively uniform relative accuracy, which corresponds to scientific notation

I With scientific notation, we seek to store the most significant digits of each
number, so that the magnitude of the relative error in our representation for
most real numbers x will be |x̂− x|/|x| ≤ ε

I Propagated Data Error: error due approximations in the input, f(x̂)− f(x)

I Computational Error = f̂(x)− f(x) = Truncation Error + Rounding Error
I Truncation error is the error made due to approximations made by the

algorithm (simplified models used in our approximation)
I Rounding error is the error made due to inexact representation of quantities

computed by the algorithm

Error Analysis
I Forward Error:

Forward error is the computational error of an algorithm
I Absolute: f̂(x)− f(x)
I Relative: (f̂(x)− f(x))/f(x)
I Usually, we care about the magnitude of the final error, but carrying through

signs is important when analyzing error
I Backward Error:

It can be hard to tell what a ‘good’ forward error is, but backward error
analysis enables us to measure computational error with respect to data
propagation error

I An algorithm is backward stable if its a solution to a nearby problem
I If the computed solution f̂(x) = f(x̂) then

backward error = x̂− x
I More precisely, we want the nearest x̂ to x with f̂(x) = f(x̂)

I If the backward error is smaller than the propagated data error, the solution
computed by the algorithm is as good as possible

Conditioning
I Absolute Condition Number:

The absolute condition number is a property of the problem, which measures
its sensitivity to perturbations in input

κabs(f) = lim
size of input perturbation→0

max
inputs

max
perturbations in input

∣∣∣∣perturbation in output
perturbation in input

∣∣∣∣
For problem f at input x it is simply the derivative of f at x,

κabs(f) = lim
∆x→0

∣∣∣∣f(x+ ∆x)− f(x)

∆x

∣∣∣∣ =

∣∣∣∣ dfdx(x)

∣∣∣∣
When considering a space of inputs X it is κabs = maxx∈X

∣∣∣ dfdx(x)
∣∣∣

I (Relative) Condition Number:
The relative condition number considers relative perturbations in input and
output, so that

κ(f) = κrel(f) = max
x∈X

lim
∆x→0

∣∣∣∣(f(x+ ∆x)− f(x))/f(x)

∆x/x

∣∣∣∣ =
κabs(f)|x|
|f(x)|

Posedness and Conditioning

I What is the condition number of an ill-posed problem?

I If the condition number is bounded and the solution is unique, the problem is
well-posed

I An ill-posed problem f either has no unique solution or has a (relative)
condition number of κ(f) =∞

I This condition implies that the solutions to problem f are continuous and
di�erentiable in the given space of possible inputs to f

I Sometimes well-posedness is defined to only require continuity
I Generally, κ(f) can be thought of as the distance (in an appropriate geometric

embedding of problem configurations) from f to the nearest ill-posed problem

Stability and Accuracy
I Accuracy:

An algorithm is accurate if f̂(x) = f(x) for all inputs x when f̂(x) is computed
in infinite precision

I In other words, the truncation error is zero (rounding error is ignored)
I More generally, an algorithm is accurate if its truncation error is negligible in

the desired context
I Yet more generally, the accuracy of an algorithm is expressed in terms of

bounds on the magnitude of its truncation error

I Stability:
An algorithm is stable if its output in finite precision (floating point
arithmetic) is always near its output in exact precision

I Stability measures the sensitivity of an algorithm to roundo� error
I In some cases, such as the approximation of a derivative using a finite

di�erence formula, there is a trade-o� between stability and accuracy

