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Solving Triangular Systems

» Lx = bif L is lower-triangular is solved by forward substitution:

liizy = by x1 =bi1/ln
lo1x1 +logxa = by = w3 = (b — l2121)/l22
3171 + 329 + l3373 = ba xg = (bg — lz121 — lI3022) /133

» Computational complexity of forward/backward substitution:
The total cost for x € R™ is n? /2 multiplications and n? /2 additions to leading
order. So the asymptotic complexity is O(n?), the same as for a matrix-vector
product.



Solving Triangular Systems

» Existence of solutionto Lz = b:
If some l;; = 0, the solution may not exist, and L~ does not exist.

» Invertibility of L and existence of solution:
Even if some l;; = 0 and L~! does not exist, the system may have a solution.
The solution will not be unique since columns of L are necessarily linearly
dependent if a diagonal element is zero.



Properties of Triangular Matrices
» Z = XY islower triangularis X and Y are both lower triangular:
Holds trivially when n = 1, then for n > 1,

Z11 212 _ X111 Y1

Zy1 Za Xo1 Xoo| |Yo1 Yool
By induction Z1, = X11Y11 and Zy, = X92Y5o are lower-triangular. Then it
suffices to observe that Z15, = 0.

» L~ !is lower triangular if it exists:

We give a constructive proof by providing an algorithm for triangular matrix
inversion, We need Y = X! so

i et
Yo Yoo| [Xo1 Xoo I’

from which we can deduce
Yii =X, Yoo=X,' You=-YuXnY.



LU Factorization

» An LU factorization consists of a unit-diagonal lower-triangular factor L
and upper-triangular factor U such that A = LU:

>

Unit-diagonal implies each l;; = 1, leaving n(n — 1)/2 unknowns in L and

n(n + 1)/2 unknowns in U, for a total of n?, the same as the size of A.

Once we have an LU factorization of A, we can solve the linear system Ax = b
1. using forward substitution Ly = b
2. using backward substitution to solve Uz = y

Assuming invertibility, this corresponds to computing x = U~'L~'b

It suffices to have a forward substitution routine and reversing the ordering of

vector elements, done by taking the product with P, p;; = 6(i,n + 1 — j),

LU =LPPUPP=LPLP
N——

L

For rectangular matrices A € R™*", one can consider a full LU factorization,
with L € R™*max(mn) gnd U € R@ax(mn)xn pyt it is fully described by a
reduced LU factorization, with L € Rm>*min(m.n) gqnd 7 ¢ R™in(m.n)xn



Gaussian Elimination
3 2
» The LU factorization may not exist: Consider matrix |6 4].
0 3
We can infer what the first row of L and column of U directly from the matrix,

3 92 1 0
6 4] = |2 1 B 2}
0 3 0 Iz 21

Then we can observe that 4 = 4 + us1 SO uay = 0, but at the same time

I3au91 = 3, which is a contradiction.

A A

Ay Agp
singular (det(A11) = 0), A has no LU factorization.

» Permutation of variables enables us to transform the linear system so the
LU factorization does exist:
If A is not singular, its leading k columns for any k have a span of dimension
k, and so a permutation of their rows exists so Ay, € R¥** js not singular.

More generally, if for any partitioning { } the leading minor is



Gaussian Elimination Algorithm

» Algorithm for factorization is derived from equations given by A = LU:

A Ap| _ |Ln Uy U
Ay Agp Ly Lo Uz
» Obtain LU factorization of the leading minor A1 = L1,U;; by recursion
» Solve sets of triangular linear systems can be solved to obtain Lo, and U,, from

A1 = LyyUyy and Ao = L11Uy»
» Obtain Loy and Uy, by recursion of LU on Schur complement

S = A9y — LoyUyg = Agy — A21A1_11A12 = LUy,
» The kth column of L is given by the kth elementary matrix M;.:

Mk[vl ey 0 -4 0



Elimination Matrices
» An elimination matrix M, satisfies the following properties:

» Itis a rank-1 perturbation of the identity that is unit-diagonal and
lower-triangular,

Mk:IfmkekT:If [Tgk] ef

» It reduces a given vector to its first k elements

a1

Mk ag| = a
0

» M, ' =1+ myel =21 - M,

T
> MM, = (I -mjef)(I —myei) = (I—[m; my]le; e] )=M;+M,—1I



Gaussian Elimination with Partial Pivoting

» Partial pivoting permutes rows to make divisor w;; is maximal at each step:

Based on our argument above, for any matrix A there exists a permutation
matrix P that can permute the rows of A to permit an LU factorization,

PA=LU.

Partial pivoting finds such a permutation matrix P one row at a time. The ith
row is selected to maximize the magnitude of the leading element (over
elements in the first column), which becomes the entry w;;. This selection
ensures that we are never forced to divide by zero during Gaussian
elimination and that the magnitude of any element in L is at most 1.

» A row permutation corresponds to an application of a row permutation
matrix f’Jk =1- (ej — ek)(ej — ek)T:
If we permute row i; to be the leading (ith) row at the ith step, the overall
permutation matrix is given by PT = H?:_f Py, generally, pij # (3, 1;).-



Complete Pivoting and Error Bounds

» Complete pivoting permutes rows and columns to make divisor u;; is
maximal at each step:

Partial pivoting bounds the size of elements in L, but elements in U can have
magnitudes larger than elements of A. Complete pivoting bounds this
growth, by ensuring that

» For LU, the backward error § A, so that LU = A + § A, satisfies bound
|0a;;| < e(|L| - [U[)y:
For an arbitrary a;;, consider the partitioning [iu iu] where Aq is of

21 22

dimension min(i, j) — 1. After the Schur complement update
S = fl(As — L21Uy2), the entry in S corresponding to a;; (an entry in As)
will become an entry of U or an entry of L (after a division that can only
shrink the error). Thus the L and U are factors of a matrix A + § A where the
perturbation is bounded by the error of the inner product necessary to
compute any Schur complement entry, so |0a;j| < €(|L| - |UY|);.



