
CS 450: Numerical Anlaysis
Lecture 5

Chapter 2 – Linear Systems
Solving Linear Systems

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

February 2, 2018

Solving Triangular Systems

I Lx = b if L is lower-triangular is solved by forward substitution:

l11x1 = b1 x1 = b1/l11

l21x1 + l22x2 = b2 ⇒ x2 = (b2 − l21x1)/l22
l31x1 + l32x2 + l33x3 = b2 x3 = (b3 − l31x1 − l32x2)/l33

...
...

I Computational complexity of forward/backward substitution:
The total cost for x ∈ Rn is n2/2 multiplications and n2/2 additions to leading
order. So the asymptotic complexity is O(n2), the same as for a matrix-vector
product.

Solving Triangular Systems

I Existence of solution to Lx = b:
If some lii = 0, the solution may not exist, and L−1 does not exist.

I Invertibility of L and existence of solution:
Even if some lii = 0 and L−1 does not exist, the system may have a solution.
The solution will not be unique since columns of L are necessarily linearly
dependent if a diagonal element is zero.

Properties of Triangular Matrices
I Z =XY is lower triangular isX and Y are both lower triangular:

Holds trivially when n = 1, then for n > 1,[
Z11 Z12

Z21 Z22

]
=

[
X11

X21 X22

] [
Y11

Y21 Y22

]
.

By induction Z11 =X11Y11 and Z22 =X22Y22 are lower-triangular. Then it
su�ces to observe that Z12 = 0.

I L−1 is lower triangular if it exists:
We give a constructive proof by providing an algorithm for triangular matrix
inversion, We need Y =X−1 so[

Y11

Y21 Y22

] [
X11

X21 X22

]
=

[
I

I

]
,

from which we can deduce

Y11 =X
−1
11 , Y22 =X

−1
22 , Y21 = −Y22X21Y11.

LU Factorization
I An LU factorization consists of a unit-diagonal lower-triangular factor L

and upper-triangular factorU such thatA = LU :
I Unit-diagonal implies each lii = 1, leaving n(n− 1)/2 unknowns in L and
n(n+ 1)/2 unknowns in U , for a total of n2, the same as the size of A.

I Once we have an LU factorization of A, we can solve the linear system Ax = b
1. using forward substitution Ly = b
2. using backward substitution to solve Ux = y

I Assuming invertibility, this corresponds to computing x = U−1L−1b

I It su�ces to have a forward substitution routine and reversing the ordering of
vector elements, done by taking the product with P , pij = δ(i, n+ 1− j),

LU = LP PUP︸ ︷︷ ︸
L̃

P = LPL̃P

I For rectangular matrices A ∈ Rm×n, one can consider a full LU factorization,
with L ∈ Rm×max(m,n) and U ∈ Rmax(m,n)×n, but it is fully described by a
reduced LU factorization, with L ∈ Rm×min(m,n) and U ∈ Rmin(m,n)×n.

Gaussian Elimination

I The LU factorization may not exist: Consider matrix

3 2
6 4
0 3

.
We can infer what the first row of L and column of U directly from the matrix,3 2

6 4
0 3

 =

1 0
2 1
0 l32

[3 2
0 u21

]
.

Then we can observe that 4 = 4 + u21 so u21 = 0, but at the same time
l32u21 = 3, which is a contradiction.

More generally, if for any partitioning
[
A11 A12

A21 A22

]
the leading minor is

singular (det(A11) = 0), A has no LU factorization.
I Permutation of variables enables us to transform the linear system so the

LU factorization does exist:
If A is not singular, its leading k columns for any k have a span of dimension
k, and so a permutation of their rows exists so A11 ∈ Rk×k is not singular.

Gaussian Elimination Algorithm
I Algorithm for factorization is derived from equations given byA = LU :[

A11 A12

A21 A22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
I Obtain LU factorization of the leading minor A11 = L11U11 by recursion
I Solve sets of triangular linear systems can be solved to obtain L21 and U

¯ 12 from
A21 = L21U11 and A12 = L11U12

I Obtain L22 and U22 by recursion of LU on Schur complement

S = A22 −L21U12 = A22 −A21A
−1
11 A12 = L22U22

I The kth column of L is given by the kth elementary matrixMk:

Mk

[
v1 · · · vk 0 · · · 0

]T
= v

Elimination Matrices
I An elimination matrixMk satisfies the following properties:

I It is a rank-1 perturbation of the identity that is unit-diagonal and
lower-triangular,

Mk = I −mke
T
k = I −

[
m̃k

0

]
eTk

I It reduces a given vector to its first k elements

Mk


a1
...
ak
0
...

 = a

I M−1
k = I +mke

T
k = 2I −Mk

I MjMk = (I −mje
T
j)(I −mke

T
k) = (I −

[
mj mk

] [
ej ek

]T
) =Mj +Mk − I

Gaussian Elimination with Partial Pivoting
I Partial pivoting permutes rows to make divisor uii is maximal at each step:

Based on our argument above, for any matrix A there exists a permutation
matrix P that can permute the rows of A to permit an LU factorization,

PA = LU .

Partial pivoting finds such a permutation matrix P one row at a time. The ith
row is selected to maximize the magnitude of the leading element (over
elements in the first column), which becomes the entry uii. This selection
ensures that we are never forced to divide by zero during Gaussian
elimination and that the magnitude of any element in L is at most 1.

I A row permutation corresponds to an application of a row permutation
matrix Pjk = I − (ej − ek)(ej − ek)T :
If we permute row ij to be the leading (ith) row at the ith step, the overall
permutation matrix is given by P T =

∏n−1
i=1 Piij , generally, pij 6= δ(j, ij).

Complete Pivoting and Error Bounds
I Complete pivoting permutes rows and columns to make divisor uii is

maximal at each step:
Partial pivoting bounds the size of elements in L, but elements in U can have
magnitudes larger than elements of A. Complete pivoting bounds this
growth, by ensuring that

I For LU, the backward error δA, so that L̂Û = A+ δA, satisfies bound
|δaij | ≤ ε(|L̂| · |Û |)ij :

For an arbitrary aij , consider the partitioning
[
A11 A12

A21 A22

]
where A11 is of

dimension min(i, j)− 1. After the Schur complement update
S = fl(A22 − L̂21Û12), the entry in S corresponding to aij (an entry in A22)
will become an entry of U or an entry of L̂ (after a division that can only
shrink the error). Thus the L̂ and Û are factors of a matrix A+ δA where the
perturbation is bounded by the error of the inner product necessary to
compute any Schur complement entry, so |δaij | ≤ ε(|L̂| · |Û |)ij .

