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Eigenvalues and the Field of Values

I The field of values is the set of possible Rayleigh quotients of matrix A:

W (A) = max
x6=0

xHAx

xHx

I If and only if the matrix is normal, the field of values is the convex hull of the
eigenvalues:
For A = XDX−1

I all eigenvalues are in the field of values, ∀i, dii ∈W (A).
I if the matrix is normal, X−1 = XT ,

W (A) =
{
s : s =

n∑
i=1

xidii, ||x||1 ≤ 1
}



Canonical Forms

I Any matrix is similar to a matrix in Jordan form:

A = X

J1

. . .
Jk

X−1, ∀i, Ji =


λi 1

. . . . . .
. . . 1

λi


the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

I Any diagonalizable matrix is orthogonally similar to a matrix in Schur form:

A = QTQT

where T is upper-triangular, so the eigenvalues of A is the diagonal of T



Computing Eigenvectors of Matrices in Schur Form

I Given the eigenvectors of one matrix, we seek those of a similar matrix:
Suppose that A = SBS−1 and B = XDX−1 where D is diagonal,

I the eigenvalues of A are D
I A = SBS−1 = SXDX−1S−1 so SX are the eigenvectors of A

I Its easy to obtain eigenvectors of triangular matrix T =

[
T11 T12

T22

]
:

If X1 are eigenvectors of T1,
[
X1

0

]
are eigenvectors of T , while if Y2 are

eigenvectors of T2, then
[
Y1

Y2

]
are eigenvectors of T where Y1 = T−11 T12T2



Matrix Reductions

I Any matrix can be reduced by an orthogonal similarity transformation to
upper-Hessenberg form A = QHQT :
We can reduce to upper-Hessenberg by successive Householder
transformations

A =

h11 a12 · · ·
a21 a22

... . . .

 = Q1

h11 a12 · · ·
h21 t22 · · ·

0
... . . .

 = Q1

h11 h12 · · ·
h21 h22 · · ·

0
... . . .

QT
1 = · · ·

subsequent columns can be reduced by induction, so we always can and
know how to reduce to upper-Hessenberg with roughly the same cost as QR.

I In the symmetric case, Hessenberg form implies tridiagonal:
If A = AT then H = QAQT = HT , and a symmetric upper-Hessenberg
matrix must be tridiagonal



Solving Hessenberg Nonsymmetric Eigenproblems

I Eigenvalues of a Hessenberg matrix are usually computed by QR iteration:
Using A0 = H , with a shift of σi at iteration i QR iteration is

QiRi = Ai − σiI
Ai+1 = RiQi + σiI

I Good convergence guarantees given by Francis (Wilkinson) shift:
To handle complex eigenvalues, diagonalize the bottom-right 2-by-2 block of
Ai and use the eigenvalues σi, σ̄i as the next two shifts (also possible to
reorganize and do a double-step with two shifts).



Solving Tridiagonal Symmetric Eigenproblems
A rich variety of methods exists for the tridiagonal eigenproblem:

I QR iteration requires O(1) QR factorizations per eigenvalue, O(n2) cost to get
eigenvalues, O(n3) for eigenvectors. The last cost leaves room for
improvement.

I Divide and conquer reduces tridiagonal T by a similarity transformation to a
rank-1 perturbation of identity, then computes its eigenvalues using roots of
secular equation

T =

[
T1 tn/2+1,n/2en/2e

T
1

tn/2+1,n/2e1e
T
n/2 T2

]
=

[
T̂1

T̂2

]
+ tn/2+1,n/2

[
en/2
e1

] [
eTn/2 eT1

]
=

[
Q1D1Q

T
1

Q2D2Q
T
2

]
+ . . .

=

[
Q1

Q2

]([
D1

D2

]
+ tn/2+1,n/2

[
QT

1 en/2
QT

2 e1

] [
eTn/2Q1 eT1 Q2

]
︸ ︷︷ ︸

D+αuuT

)[
QT

1

QT
2

]



Solving the Secular Equation

To solve the eigenproblem at each step, the divide and conquer method needs to
diagonalize a rank-1 perturbation of a diagonal matrix

A = D + αuuT

I the characteristic polynomial is

f(λ) = 1− αuT (λI −D)−1u = 1− α
n∑
i=1

u2i
λ− dii

= 0

I this nonlinear equation can be solved e�ciently by a variant of Newton’s
method, that uses hyperbolic rather than linear extrapolations at each step



Solving Tridiagonal Symmetric Eigenproblems (II)

I Jacobi iteration classically is performed to eliminate largest value in
magnitude, requires O(1) sweeps over all nonzeros, O(n2) cost to get
eigenvalues, O(n3) to get eigenvectors

I Bisection finds a partition point using LDLT factorization or Sturm sequence
to compute inertia (#positive eigenvalues, #negatives eigenvalues #zero
eigenvalues). Sylvester’s inertia theorem shows that inertia is preserved that
under any transformation A = SBST where S is an invertible matrix.
Consequently, the diagonal D matrix in the LDLT factorization has the
same inertia as A. Computing this factorization with various shifts enables
successive halving of the approximation interval.

I Relatively robust representation (RRR and MRRR) leverages stability of values
in LDLT and other techniques to compute all eigenvectors and eigenvalues
in O(n2) cost. These factorized forms minimize sensitivity to round-o� error.


