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Eigenvalues and the Field of Values

» The field of values is the set of possible Rayleigh quotients of matrix A:

xH Ax
WI(A) = max =i

» If and only if the matrix is normal, the field of values is the convex hull of the
eigenvalues:
For A= XDX!

» all eigenvalues are in the field of values, Vi, d;; € W(A).
» if the matrix is normal, X ' = X7,

W(A) = {s ps = wdi ||zl < 1}
=1



Canonical Forms

» Any matrix is similar to a matrix in Jordan form:

Jy
A=X XY v, J=
Jk; ‘. 1

the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

» Any diagonalizable matrix is orthogonally similar to a matrix in Schur form:

A=QTQ"

where T is upper-triangular, so the eigenvalues of A is the diagonal of T



Computing Eigenvectors of Matrices in Schur Form

» Given the eigenvectors of one matrix, we seek those of a similar matrix:
Suppose that A = SBS~! and B = X DX ! where D is diagonal,

» the eigenvalues of A are D
» A=SBS'=8XDX 'S so SX are the eigenvectors of A

» Its easy to obtain eigenvectors of triangular matrix T = [TH ?2} :
22

If X, are eigenvectors of T}, [)gl} are eigenvectors of T, while if Y5 are

Y:

Y, ] are eigenvectors of T where Yy = T, ' Ty2 Ty

eigenvectors of Ty, then [



Matrix Reductions

» Any matrix can be reduced by an orthogonal similarity transformation to
upper-Hessenberg form A = QHQ":

We can reduce to upper-Hessenberg by successive Householder

transformations
hit aip --- hit aip --- hi1 hi2
A= |21 a2 =Q |har t22 | =@ |h2r h22 | QT =...

o = - 0

subsequent columns can be reduced by induction, so we always can and
know how to reduce to upper-Hessenberg with roughly the same cost as QR.

» In the symmetric case, Hessenberg form implies tridiagonal:

IfA= AT then H = QAQT = H”, and a symmetric upper-Hessenberg
matrix must be tridiagonal



Solving Hessenberg Nonsymmetric Eigenproblems

» Eigenvalues of a Hessenberg matrix are usually computed by QR iteration:
Using Ay = H, with a shift of o; at iteration i QR iteration is

QiR; =A; — o1
Aiy1 = RQ; + 0,1

» Good convergence guarantees given by Francis (Wilkinson) shift:
To handle complex eigenvalues, diagonalize the bottom-right 2-by-2 block of
A; and use the eigenvalues o;, a; as the next two shifts (also possible to
reorganize and do a double-step with two shifts).



Solving Tridiagonal Symmetric Eigenproblems
A rich variety of methods exists for the tridiagonal eigenproblem:
» QR iteration requires O(1) QR factorizations per eigenvalue, O(n?) cost to get

eigenvalues, O(n?) for eigenvectors. The last cost leaves room for
improvement.

» Divide and conquer reduces tridiagonal T by a similarity transformation to a
rank-1 perturbation of identity, then computes its eigenvalues using roots of

secular equation
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Solving the Secular Equation

To solve the eigenproblem at each step, the divide and conquer method needs to
diagonalize a rank-1 perturbation of a diagonal matrix

A =D+ auu”’

» the characteristic polynomial is

FfA) =1—au” (M — D) 'u = Z
=1

» this nonlinear equation can be solved efficiently by a variant of Newton’s
method, that uses hyperbolic rather than linear extrapolations at each step



Solving Tridiagonal Symmetric Eigenproblems (II)

» Jacobi iteration classically is performed to eliminate largest value in

magnitude, requires O(1) sweeps over all nonzeros, O(n?) cost to get
eigenvalues, O(n?) to get eigenvectors

» Bisection finds a partition point using LD L™ factorization or Sturm sequence

to compute inertia (#positive eigenvalues, #negatives eigenvalues #zero
eigenvalues). Sylvester’s inertia theorem shows that inertia is preserved that
under any transformation A = SBS™ where S is an invertible matrix.
Consequently, the diagonal D matrix in the LDL™ factorization has the
same inertia as A. Computing this factorization with various shifts enables
successive halving of the approximation interval.

» Relatively robust representation (RRR and MRRR) leverages stability of values

in LDL™ and other techniques to compute all eigenvectors and eigenvalues
in O(n?) cost. These factorized forms minimize sensitivity to round-off error.



